
Files and Navigation Services Version 1.0 18-1

18
FILES AND NAVIGATION SERVICES
 Demonstration Program: Files

Introduction
This chapter addresses:

• Creating, opening, reading from, writing to, and closing files.

• Navigation Services, an application programming interface that allows your application to provide
a user interface for navigating, opening, and saving Mac OS file objects.

Files

Types of Files

A file is a named, ordered sequence of bytes stored on a volume. The files associated with an application
are typically:

• The application file itself, which comprises the application's executable code and any application-
specific resources and data.

• Document files created by the user using the application, which the user can edit.

• A preferences file created by the application to store user-specified preference settings for the
application.

The Operating System also uses files for certain purposes. For example, as stated at Chapter 9, the File
Manager uses a special file called the volume's catalog file to maintain the hierarchical organisation of
files and folders in a volume.

Characteristics of Files

File Forks

Macintosh files comprise two forks, called the data fork and the resource fork. The resource fork
contains a resource map and resources. Unlike the bytes stored in the resource fork, the bytes in the data
fork do not have to have any particular internal structure. Your application must therefore be able to
interpret the bytes in the data fork in an appropriate manner.

All Macintosh files contain a data fork and a resource fork; however, one or both of these forks may, in
fact, be empty. Fig 1 shows the typical contents of the data and resource forks of an application file and a
document file.

18-2 Version 1.0 Files and Navigation Services

FIG 1 - TYPICAL CONTENTS OF DATA FORKS AND RESOURCE FORKS IN APPLICATION AND DOCUMENT FILES

POWERPC
APPLICATION CODE

USER'S DATA LAST LOCATION AND
SIZE OF WINDOW.

MISSING
APPLICATION NAME

PAPER SIZE
SPECIFIED IN PAGE
SETUP… DIALOG

RESOURCE FORKDATA FORK

DESCRIPTIONS OF
MENUS, DIALOG
BOXES, ICONS, ETC.

TEXT STRINGS FOR
DIALOG BOXES.

RESOURCE FORKDATA FORK

APPLICATION FILE DOCUMENT FILE

If your data can be structured as a resource, you might elect to store that data in the resource fork, in which
case you use Resource Manager functions to both store and retrieve it. Retrieving data from a resource
fork is a comparatively simple matter because all you have to do is pass the resource type and ID to the
relevant Resource Manager function.

If it is neither possible nor advisable to store the data in the resource fork, you must store it in the data fork.
This is normally the favoured option for storing, for example, a document's text. In this case, you use File
Manager functions to store and retrieve the data. With File Manager functions, unlike Resource Manager
functions, you can access any byte, or group of bytes, individually.

Generally speaking, unless the data created by the user will occupy only a small number of resources, you
should store it in the data fork. Always bear in mind that the Resource Manager was not designed as a
general purpose data storage and retrieval system.

File Size

Volumes

A volume, which can be an entire disk or only part thereof, is that part of a storage device formatted to
contain files. Ordinarily, file size is limited only by the size of the volume that contains it.

Logical Blocks and Allocation Blocks

Volumes are formatted into logical blocks. Each logical block can contain up to 512 bytes, the actual size
being of interest only to the disk device driver. When the File Manager allocates space for a file, it
allocates it in units called allocation blocks, which are groups of consecutive logical blocks. A non-empty
file fork always occupies at least one allocation block.

The size of an allocation block is the chief distinguishing feature between the volume format known as the
Hierarchical File System (HFS) and the newer Hierarchical File System Plus (HFS Plus or HFS+)
introduced with Mac OS 8.1. The differences are as follows:

• HFS (Mac OS Standard Format). For HFS-formatted volumes, the File Manager can access a
maximum of 65,535 allocation blocks on any volume. Thus the larger the volume, the larger the
allocation block. For example, on a 500 MB volume, the allocation block size is 8KB under HFS.

• HFS Plus (Mac OS Extended Format). For HFS Plus-formatted volumes, the File Manager can access
a maximum of 4.29 billion allocation blocks on any volume. This means that even huge volumes
can be formatted with very small allocation blocks. The default volume format for Carbon is HFS
Plus.

Files and Navigation Services Version 1.0 18-3

Note

Beginning with Mac OS 9, HFS Plus introduced support for long Unicode filenames, files larger than
2GB, and extended file attributes. The additional File Manager constants, data types, and functions
introduced at that time are often referred to as the HFS Plus API.

On large volumes, the significant reduction in allocation block size under HFS Plus results in significant
space savings. For example, on a 4 GB volume, a file containing only 4 KB of information requires 64 KB
of space under HFS, whereas the same file requires only 4KB of space under HFS Plus.

Physical and Logical End-Of-File

There is a difference between the amount of space allocated to a file and the number of bytes of actual data
in the file. This is reflected in the two numbers used to describe the size of a file:

• Physical End-Of-File. The physical end-of-file is the number of bytes currently allocated to the file
by the File Manager. Since the file's first byte is byte number 0, the physical end-of-file is 1 greater
than the number of the last byte in its last allocation block. The physical end-of-file is thus always
an exact multiple of allocation block size.

• Logical End-Of-File. The logical end-of-file is one greater than the number of bytes that currently
contain data.

Fig 2 illustrates logical end-of-file and physical end-of-file.

FIG 2 - LOGICAL AND PHYSICAL END-OF-FILE

LOGICAL BLOCK 5 LOGICAL BLOCK 6

ALLOCATION BLOCK 3

BYTE 0 511 512 1023

LOGICAL END-OF-FILE (BYTE 509) PHYSICAL END-OF-FILE (BYTE 1024)

Your application can adjust the size of a file by moving the logical end-of-file. If, when you increase the
size of a file, the logical end-of-file is moved past the physical end-of-file, one or more allocation blocks
are automatically added to the file by the File Manager. By the same token, the File Manager
automatically deletes the unneeded allocation block if you move the logical end-of-file more than one
allocation block short of the current physical end-of-file.

Clumps and Combating File Fragmentation

The volume's clump size determines the number of allocation blocks added to the file when you move the
logical end-of-file past the physical end-of-file. The File Manager enlarges files by adding clumps (which
are groups of contiguous allocation blocks) as a way of reducing file fragmentation and improving
input/output performance.

Your application can also takes steps to reduce file fragmentation. Suppose you are extending a file with
multiple write operations. If you know before you begin how large the file is likely to become, you should
first call SetEOF to set the file to that size.

File Access

The operations your application can perform on a file depend on whether it is open or closed. For
example, reading and writing operations can only be performed on open files, and deleting operations can
only be performed on closed files.

18-4 Version 1.0 Files and Navigation Services

Access Path and File Reference Number

When a file is opened, the File Manager reads in file information and creates an access path to the file.
The file information is stored in a file control block (FCB). The access path, which is assigned a unique
file reference number, specifies the volume on which the file is located and the location of the file on that
volume.

File Mark

The File Manager maintains a file mark (a current-position marker) for each access path. The file mark,
which is moved each time a byte is read or written, is the number of the next byte to be read or written. By
setting the file mark or specifying an offset, you can control the beginning point of a read or write
operation.

Data Buffer

When it transfers data to or from your application, the File Manager uses a data buffer in RAM. You
must therefore pass the address of this data buffer whenever you read or write a file's data.

Disk Cache

The File Manager uses an intermediate buffer, called the disk cache, when reading data from, or writing
data to, the file system.

During a write operation, data is transferred from your application's data buffer to the disk cache. During a
read operation, the File Manager looks for data in the disk cache and, if data is found in the cache, transfers
that data to your application's data buffer. If the File Manager finds no data in the disk cache, it reads the
requested number of bytes from the disk directly to your application's data buffer.

The Hierarchical File System

Directories and Directory ID

The method used to organise files on a Macintosh volume is called a hierarchical file system. In this
system, files are grouped into directories (also called folders). These directories may, in turn, be grouped
into other directories (see Fig 3). As shown at Fig 3, each directory has a number associated with it called
the directory ID.

FIG 3 - MACINTOSH HIERARCHICAL FILE SYSTEM

2

11 21

27 35 43

VOLUME

Root Directory

The Finder and the File Manager work together to maintain the organisation of files and folders on a
volume, ensuring that the representation on the desktop corresponds directly to the hierarchical directory
structure on the volume. In file system parlance, the volume is referred to as the root directory, and the
folders are referred to as subdirectories (or simply as directories).

Files and Navigation Services Version 1.0 18-5

Mounted Volumes

When a volume is mounted, the File Manager places information about the volume in a volume control
block (VCB) and assigns a volume reference number by which you can refer to the volume until it is
unmounted. Mounted volumes appear on the desktop.

You can identify a volume by its volume reference number or by its volume name. To avoid confusion
between volumes with the same name, you should ordinarily use the volume reference number to refer to a
volume.

When a volume is unmounted, the volume control block is released and the volume is no longer known to
the File Manager.

Parent Directory and Parent Directory ID

The directory in which a subdirectory is located is referred to as a parent directory. A parent directory is
assigned a parent directory ID. A special parent directory ID is assigned by the File Manager to a
volume's root directory. All this facilitates a consistent method of identifying files and directories using
the volume reference number, the parent directory ID, and the file or directory name.

Generally speaking, your application does not need to keep track of the location of files in the file system
hierarchy. The location of most of the files your application opens and saves is provided by either the
Finder or Navigation Services.

Aliases

An alias is a special kind of file that represents another file, folder, or volume. The Finder and Navigation
Services automatically resolve aliases.

Identifying Files and Directories — File System Specification
Structure and File System Reference

Three pieces of information are all that is needed to identify a file or directory: a volume reference number;
a parent directory ID; the name of the file or directory. Of relevance is this regard are two data types,
namely, the file system specification structure and the opaque file system reference:

struct FSSpec
{
 short vRefNum; // Volume reference number.
 long parID; // Directory ID of parent directory.
 Str63 name; // Filename or directory name.
};
typedef struct FSSpec FSSpec;
typedef FSSpec *FSSpecPtr, **FSSpecHandle;

struct FSRef
{
 UInt8 hidden[80];
};
typedef struct FSRef FSRef;
typedef FSRef *FSRefPtr;

The opaque data type FSRef, whose purpose is similar to that of the file system specification structure, was
introduced with the HFS Plus API. Note that there is no need to call the File Manager to dispose of an
FSRef when it is no longer needed.

Creating, Opening, Reading From, Writing To, and Closing Files

Your application typically creates, opens, reads from, writes to, and closes files in response to the user
choosing commands from the File menu. In addition, your application opens, reads from, writes to, and
closes files in response to the required Apple events (see Chapter 10).

The following describes how to perform typical file operations within the context of a user choosing
commands from an imaginary application's File menu and, on Mac OS X, the Quit command. For the

18-6 Version 1.0 Files and Navigation Services

purposes of illustration, the assumption is made that the files involved store text documents and that, when
retrieved from file, the documents are displayed in a window with scroll bars.

General File Menu and Required Apple Events Handling Strategy

A suggested general strategy for handling user choices of the New, Open…, Close, Save, Save As…, Revert,
and Quit commands, and for responding to the required Apple events, is illustrated at Fig 4.

Preliminaries - Creating a Document Structure

The contents of document files are displayed in windows. Ordinarily, your application should define a
document structure which contains information about the window and information about the file whose
contents are displayed in the window. The following is an example of a document structure for an
application that handles text files:

typedef struct
{
 ControlHandle vScrollBarHdl; // Handle to vertical scroll bar.
 ControlHandle hScrollBarHdl; // Handle to horizontal scroll bar.
 SInt16 fileRefNum; // File reference number for window's file.
 FSSpec fileFSSpec; // File's file system specification structure.
 TEHandle textEditHdl; // Handle to TextEdit structure.
 Boolean windowTouched; // Has window's data changed?
} documentStructure;

typedef documentStructure *documentStructurePtr;
typedef documentStructure **documentStructureHdl;

Note the fileRefNum and fileFSSpec fields. Note also that the last field (windowTouched) is used to record
whether the content of the document in memory differs from that in the associated file. Your application
should set this field to false when it first reads in the file and immediately after each save, and to true
when the content of the document in memory is changed by the user after the first read-in and after the
subsequent saves. If the windowTouched field is set to true and the user attempts to close the document
window, your application should present an alert asking the user whether the changed version of the
document should be saved.

Document structures can be associated with the relevant window by storing a handle to the structure in the
window object using the function SetWRefCon.

Creating a New Document Window

The user creates a new untitled document window using the New… command in the File menu. In addition,
it is usual for an application to open a new untitled document window when it receives an Open
Application Apple event from the Finder. (See doNewCommand at Fig 4.)

Although the function which responds to the user choosing the New… command and Open Application
Apple event opens a new window, it should not create a new file. The reason for this is that, in the event,
the user may elect not to save the document. It is thus preferable to wait until the user decides to save the
new document before creating a file. Accordingly, the fileRefNum field of the new window's document
structure should be set to 0 to indicate that no file is currently associated with this window.

Opening a File and Reading in Data

Your application will need to open a file when the user chooses the Open… command from the File menu
(see doOpenCommand at Fig 4) and when it receives Open Documents and (on Mac OS 8/9) Print Documents
Apple events.

Opening the Navigation Services Open Dialog

Your application's initial response to the user choosing the Open… command from the File menu should be
to elicit a file selection from the user by creating and displaying a Navigation Services Open dialog (see
Fig 6).

Files and Navigation Services Version 1.0 18-7

FIG 4 - GENERAL FILE MENU, QUIT ITEM, AND REQUIRED APPLE EVENTS HANDLING STRATEGY

Call doWriteFile.

If saving using an FSRef,
call doSaveUsingFRef.

Call doWriteFile.

2. Change the window's
document structure to
flag the window as "not
touched".

OPEN DOCUMENTS

OPEN APPLICATION

PRINT DOCUMENTS

QUIT APPLICATION

RE-OPEN APPLICATION

Get file name from front
window's title.

Create and display a Nav
Sevices Discard Changes
alert.

When the user addresses
the alert, if the OK button
is clicked:

doRevertCommand

Call doNewDocWindow

Set source resource file,
get resource, detach
resource, set destination
resource file and write
resource to destination.

Get front window. Get front window.

Create and display a Nav
ServicesSave Location
dialog.

Get front window.

Copy file reference number
and FSSpec to window's
document structure and set
window's title.

Call doCopyResource,
specifying the application's
missing application name
'STR' resource as the
resource to copy.

doCopyResource

doCopyAppName
Resource

Set file mark at start.

Get data address and size.

Adjust file size.

Find the volume the file is
on and flush the volume.

Write data to file.

Change window's
document structure to flag
window as "not touched".

Find the temporary folder
on the file's volume, or
create it if necessary.

Set window title.

Call doNewDocWindow to
open new window.

Open file's data fork for
read and write.

Call doReadFile to read
in file data.

Get file reference number.

Set file mark at start.

Get file length and allocate
buffer.

Read in the data.

Display the data as
appropriate.

Create a temporary file in
the temporary folder and
open its data fork.

Call doWriteData to write
the data to the data fork of
the temporary file.

Swap the data in the
existing and temporary
files.

Delete the temporary file,
re-open the existing file.

Close the temporary file
and the existing file.

Open new window.

Allocate space for, and
initialise, a document
structure, and attach the
document structure to
window.

If front window is
"touched", create and
display a Nav Services
Save Change alert. When
the user addresses the
alert:

If the window has a file,
call doWriteFile.

If the window does not
have a file, call
doSaveAsCommand.

If the user is not replacing
an existing file, create a
new file, specifying creator
and file type.

Close the resource fork.

Open the file's data fork.

Create and open the file's
resource fork.

doSaveCommand

doNewDocWindow
doOpenFile

doWriteFile

doReadFile

doWriteData

Call
doCopyAppNameResource
to copy the missing
application name string to
the resource fork.

doSaveAsCommanddoCloseCommanddoNewCommand

(If responding to a
Re-Open Apple Event, call
doNewDocWindow only if
no windows are currently
open.)

Create and display Nav
Services Open dialog. If
appropriate, specify the
file types to display.

doOpenCommand

REQUIRED APPLE EVENTS

1. Call doReadFile
to read in the file.

When the user addresses
the dialog, call
doOpenFile.

1. If the Save button is
clicked, call
doSaveCommand,
then proceed to 2.

2. If the Don't Save
button is clicked, close
the file, flush the
volume, and release
memory associated with
the file's data.

If the front window is not
"touched", close the file,
flush the volume, and
release memory associated
with the file's data.

When the user addresses
the dialog, and clicks the
Save Button, determine
whether to save using an
FSSpec or an FSRef.

If saving using an FSSpec,
call doSaveUsingFSSpec.

doSaveUsingFSRef
doSaveUsingFSSpec

Copy FSSpec obtained on
file creation to window's
document structure and set
window's title.

If the user is replacing an
existing file, delete the file
being replaced.

Create a new file with the
Unicode name, and set
creator and file type.

Open the file's data fork.

Note: On Mac OS X, when more than one document
with unsaved changes is open and the user chooses
the Quit command or a Quit Application Apple event is
received, a Review Changes alert should be presented.
doCloseCommand should be called if the user clicks
the Review Changes… button in that alert.

Calls to the Navigation Services 3.0 functions NavCreateGetFileDialog and NavDialogRun create and display
the Navigation Services Open dialog. When the user addresses the dialog, selects one or more files, and
clicks the Open button, your application examines the selection field of a NavReplyRecord structure (see

18-8 Version 1.0 Files and Navigation Services

Navigation Services, below) and disposes of the dialog. The selection field is an Apple Event descriptor
list (AEDescList). You can determine the number of files in the list by calling the Apple Event Manager
function AECountItems. Each selected file object is described in an AEDesc structure. You can coerce this
descriptor into a file system specification (FSSpec) structure to perform operations such as opening the file.

Creating a Window and Opening the File

The next steps are to call a function (doNewDocWindow at Fig 4) to create a window and associated document
structure and open the selected file's data fork (doOpenFile at Fig 4).

The file's data fork is opened using FSpOpenDF:

OSErr FSpOpenDF(spec,permission,refNum);
FSSpec *spec; File system specification structure.
SInt8 permission; Access mode.
short *refNum; Returned file reference number.

FSpOpenDF takes the FSSpec returned by Navigation Services as its first parameter. The permission field
specifies the access mode for opening the file. The access mode may be specified using one of the
following constants:

Constant Value Description
fsCurPerm 0 Whatever permission is allowed.
fsRdPerm 1 Read permission.
fsWrPerm 2 Write permission.
fsRdWrPerm 3 Exclusive read/write permission.
fsRdWrShPerm 4 Shared read/write permission.

FSpOpenDF returns, in its third parameter, a file reference number. This reference number should be saved to
the window's document structure so that it can be readily retrieved for use as a parameter in calls to
functions which read from and write to the file.

Reading File Data

When you have opened a file, you can read data from it. Ordinarily, you will want to read data from the
file when the user first opens it. And your application will have to read data from the file when the user
chooses the Revert command in the File menu to revert to the last saved version of the document (see
doRevertCommand at Fig 4). Typically, a function for reading file data:

• Retrieves the file reference number from the document structure.

• Calls SetFPos to set the file mark to the beginning of the file:

OSErr SetFPos(refNum,posMode,posOff);
short refNum; File reference number.
short posMode; Positioning mode.
long posOff; Positioning offset.

The posMode parameter must contain one of the following constants:

Constant Value Description
fsAtMark 0 Remain at current mark.
fsFromStart 1 Set mark relative to beginning of file.
fsFromLEOF 2 Set mark relative to logical end of file.
fsFromMark 3 Set mark relative to current mark.
rdVerify 64 Add to above for read-verify.

• Determines the number of bytes in the file by calling GetEOF:

OSErr GetEOF(refNum,logEOF);
short refNum; File reference number.
long *logEOF; Receives length of file, in bytes.

Files and Navigation Services Version 1.0 18-9

• Calls FSRead to read the specified number of bytes from the file into the specified buffer:

OSErr FSRead(refNum,count,buffPtr);
short refNum; File reference number.
long *count; On input: bytes to read. On output: actual bytes read.
void *buffPtr; Address of buffer into which bytes are to be read.

Note that FSRead returns, in the count parameter, the actual number of bytes read.

Saving a File

The user can indicate that the current contents of a document should be saved:

• By choosing Save or Save As… from the File menu.

• By clicking the Save button in the Navigation Services Save Changes alert you present when the
user attempts to close a "touched" window.

• By clicking the Save button in the Navigation Services Save Changes alert you present when the
user attempts to quit the application while a "touched" window remains open.

Handling the Save Command

To handle the Save command (see doSaveCommand at Fig 4), your application should:

• Check the file reference number field of the window's document structure to determine if the
window already has a file.

• If the window already has a file, call the function for writing files to disk (see doWriteFile at Fig 4).
If the window does not have a file, call the function for handling the Save As… command.

Handling the Save As… Command

To handle the Save As… command (see doSaveAsCommand at Fig 4), your application should proceed as
follows:

• Call the Navigation Services 3.0 functions NavCreatePutFileDialog and NavDialogRun to create and
display the Navigation Services Save Location dialog (see Fig 10).

When the user addresses the dialog and clicks the Save button, your application examines the
selection field of a NavReplyRecord structure (see Navigation Services, below) and disposes of the
dialog. The selection field is an Apple Event descriptor list (AEDescList). The file object is
described in an AEDesc structure. If your application is running on Mac OS X, you will be able to
coerce this data to type FSRef. If this coercion fails (meaning that your application is running on
Mac OS 8/9) you will be able to coerce the data to type FSSpec. The FSRef or FSSpec will be required
for the save operation.

• Save Using FSRef. If the coercion to type FSRef succeeds:

• Call AEGetDescData to extract the data from the dataHandle field of the AEDesc structure. This is
the FSRef for the parent directory.

• Call CFStringGetCharacters to extract into a buffer the contents of the string referenced in the
saveFileName field of the NavReplyRecord structure.

• If the replacing field of the NavReplyRecord structure contains true, call the HFS Plus API
function FSMakeFSRefUnicode to create an FSRef for the file, passing in the FSRef for the parent
directory and the extracted filename characters. Pass this FSRef in a call to FSDeleteObject to
delete the file:

OSErr FSDeleteObject(ref);
const FSRef *ref; Pointer to FSRef specifying file or directory to delete.

• Call FSCreateFileUnicode, passing in the FSRef for the parent directory and the extracted
filename characters, to create a new file with a Unicode name:

18-10 Version 1.0 Files and Navigation Services

OSErr FSCreateFileUnicode(parentRef,nameLength,name,whichInfo,catalogInfo,
 newRef,newSpec);
const FSRef *parentRef; FSRef for directory where file to be created.
UniCharCount nameLength; Length of file's name.
const UniChar *name; Unicode name for file.
FSCatalogInfoBitmap whichInfo; Catalog information fields to be set, if any.
const FSCatalogInfo *catalogInfo; Values of file's catalog infoformation.
FSRef *newRef; On return, FSRef for new file.
FSSpec *newSpec; On return, FSSpec for new file.

• Call FSpGetFInfo, passing in the FSSpec received in the last parameter of the call to
FSCreateFileUnicode. Assign the file type and creator to the relevant fields of the obtained
Finfo structure and call FSpSetFInfo to set the Finder information.

• Assign the file system specification (FSSpec) structure to the file system specification structure
field of the window's document structure.

• Call FSpOpenDF to open the data fork.

• Assign the file reference number returned by FSpOpenDF to the file reference number field of
the window's document structure.

• Call SetWTitle to set the window's title, using the string extracted from the name field of the
file system specification (FSSpec) structure.

• Call the function for writing files to disk (see doWriteFile at Fig 4).

• Save Using FSSpec. If the coercion to type FSRef does not succeed:

• Call the Navigation Services 3.0 function NavDialogGetSaveFileName to get the file name from
the edit text field of the Save Location dialog, convert it to a Pascal string using
CFStringGetPascalString, and assign that string to the name field of the file system
specification (FSSpec) structure.

• If the replacing field of a NavReplyRecord structure does not contain true, call FSpCreate to
create a new file and set the file type and creator:

OSErr FSpCreate(spec,creator,fileType,sciptTag);
FSSpec *spec; File system specification structure.
OSType creator; File creator.
OSType fileType; File type.
ScriptCode scriptTag; Code of script system in which filename is displayed.

• Assign the coerced file system specification (FSSpec) structure to the file system specification
structure field of the window's document structure.

• If the window already has a file (that is, if the file reference number field of the document
structure does not contain 0), close that file with a call to FSClose:

OSErr FSClose(refNum);
short refNum; File reference number.

• Call FSpOpenDF to open the data fork.

• Assign the file reference number returned by FSpOpenDF to the file reference number field of
the window's document structure.

• Call SetWTitle to set the window's title, using the string extracted from the name field of the
file system specification (FSSpec) structure.

• Call the function for writing files to disk (see doWriteFile at Fig 4).

Writing File Data

The function for writing data (see doWriteFile at Fig 4) should write to a temporary file, not to the
document file itself. If you write directly to the document's file, you risk corrupting that file if the write

Files and Navigation Services Version 1.0 18-11

operation does not complete successfully. The broad approach for saving data safely to disk is therefore to
write the data to a temporary file and then, assuming the temporary file has been written successfully, swap
the contents of the temporary file and the document's file.

The procedure for updating a file safely is as follows:

• Get the file system specification from the document structure.

• Create a temporary filename for the temporary file.

• Call FindFolder to find the temporary folder on the file's volume, or create it if necessary:

OSErr FindFolder(vRefNum,folderType,createFolder,foundVRefNum,foundDirID);
short vRefNum; Volume reference number.
OSType folderType; Folder type for volume.
Boolean createFolder; kCreateFolder or kDontCreateFolder.
short *foundVRefNum; Volume reference number for folder found.
long *foundDirID; Directory ID of folder found.

• Call FSMakeFSSpec to make a file system specification structure for the temporary file:

OSErr FSMakeFSSpec(vRefNum,dirID,fileName,spec);
short vRefNum; Volume reference number.
long dirID; Parent directory ID.
ConstStr255Param fileName; Full or partial pathname.
FSSpec spec; Pointer to FSSpec structure.

• Call FSpCreate to create the temporary file, and FSpOpenDF to open the temporary file's data fork.

• Call the function for writing data to a file (see doWriteData at Fig 4). This function should:

• Retrieve the address and length of the buffer (for example, from a TextEdit structure).

• Call SetFPos to set the file mark to the beginning of the file.

• Call FSWrite to write the buffer to the file:

OSErr FSWrite(refNum,count,buffPtr);
short refNum; File reference number.
long *count; On input: bytes to write. On output: bytes written.
const void *buffPtr; Address of buffer containing data to write.

• Call SetEOF to resize the file to the number of bytes actually written:

OSErr SetEOF(refNum,logEOF);
short refNum; File reference number.
long logEOF; Logical end-of-file.

• Call GetVRefNum to determine the volume containing the file:

OSErr GetVRefNum(refNum,vRefNum);
short refNum; File reference number.
short *vRefNum; Receives volume reference number.

• Call FlushVol to flush the volume:

OSErr FlushVol(volName,vRefNum);
ConstStr63Param volName; Pointer to name of mounted volume
short vRefNum; Volume reference number.

Flushing the volume ensures that both the file's data and the file's catalog entry1 are updated.

• Call FSClose to close the temporary file.

• Call FSClose to close the existing file.

1 The catalog entry for a file contains fields that describe the physical data (such as the first allocation block and the physical
and logical ends of both the resource and data forks) and fields that describe the file within the file system, such as file ID and
parent directory ID.

18-12 Version 1.0 Files and Navigation Services

• Call FSpExchangeFiles to swap the contents of the temporary file and the existing file:

OSErr FSpExchangeFiles(source,dest);
const FSSpec *source; Source file.
const FSSpec *dest; Destination file.

FSpExchangeFiles does not actually move the data on the volume. It merely changes the information
in the volume's catalog file and, if the files are open, their file control blocks (FCBs).

• Call FSpDelete to delete the temporary file:

OSErr FSpDelete(spec);
const FSSpec *spec; File system specification.

• Call FSpOpenDF to re-open the data fork of the existing file.

As a final step for Mac OS 8/9, you should call a function which copies the missing application name
string resource (see Chapter 9) from the resource fork of the application file to the resource fork of the
newly created file. This function (doCopyAppNameResource at Fig 4) should:

• Call FSpCreateResFile to create the new file's resource fork:

void FSpCreateResFile(spec,creator,fileType,sciptTag);
const FSSpec *spec; File system specification structure.
OSType creator; File creator.
OSType fileType; File type.
ScriptCode scriptTag; Code of script system.

• Call FSpOpenResFile to open the resource fork:

short FSpOpenResFile(spec,permission);
const FSSpec *spec; File system specification structure.
SignedByte permission; Permission code.

The constants used to specify the access mode in the FSpOpenDF call (see above) are also used to
specify the permission code in the FSpOpenResFile call.

• Call a function (doCopyResource at Fig 4), which copies specified resources from one resource file to
another, to copy the missing-application name 'STR ' resource (ID -16396) from your application's
resource fork to the resource fork of the newly-created file.

• Call FSClose to close the resource fork.

Reverting to a Saved File

To allow the user to revert to the last saved version of a document, your application can include a Revert
command in the File menu. To handle this command (see doRevertCommand at Fig 4), you should call the
Navigation Services 3.0 functions NavCreateAskDiscardChangesDialog and NavDialogRun to create and display
a Navigation Services Discard Changes alert (see Fig 13). When the user addresses the dialog, and clicks
on the OK button, you simply call your function for reading file data (doReadFile at Fig 4) to read the file
back into the window.

Closing a File

Your application should ordinarily close a file when the user clicks in the close box of the associated
window or chooses the Close command from the File menu. You may also need to close files when the user
chooses Quit from the File menu or a Quit Application Apple event is received from the Finder.

When your application needs to close a file, it should first check whether the associated window has been
"touched" (see doCloseCommand at Fig 4). If the window has been "touched", you should call the Navigation
Services 3.0 functions NavCreateAskSaveChangesDialog and NavDialogRun to create and display a Navigation
Services Save Changes alert (see Fig 12). When the user addresses the dialog:

• If the Save button is clicked, call the function for saving files (doSaveCommand at Fig 4), call FSClose to
close the file, call FlushVol to ensure that both the file's data and the file's catalog entry are updated,

Files and Navigation Services Version 1.0 18-13

set the file reference number field in the document structure to 0, and release memory associated
with the storage of the file's data. Then dispose of the document structure and, finally, the window.

• If the Don't Save button is clicked, perform the same actions as are performed when the Save button
is clicked except for the call to the function for saving files.

If the window has not been "touched", perform the same actions as are performed when the Save button is
clicked in a Save Changes alert except for the call to the function for saving files.

File Synchronisation Functions

It is always possible that, while a document file is open, the user may drag its Finder icon or proxy icon to
another folder (including the Trash) or change the name of the file via the Finder icon. The application
itself has no way of knowing that this has happened and will assume, unless it is informed otherwise, that
the document's file is still at its original location with its original name. For this reason, applications often
include a frequently-called file synchronisation function which synchronises the application with the
actual current location (and name) of its currently open document files.

In applications which use the Classic event model, file synchronisation functions should be called after
every call to WaitNextEvent. In applications that use the Carbon event model, a timer should be installed to
trigger repeated calls to the file synchronisation function. For each of the application's document windows,
the synchronisation function should update the application's internal data structures to match that of the
document file as it exists on disk. The function should also ensure that, where necessary, the name of the
document window is changed to match the current name of the document file on disk and close the
document window if the document file has been moved to the Trash folder.

Navigation Services
The user interface for opening and saving files, confirming saves and discarding changes, choosing a
volume, folder, file, or file object, creating a new folder, file format translation, and easy navigation of the
file system is provided by Navigation Services.

The following reflects Navigation Service 3.0, which was introduced with CarbonLib 1.1, and which
established a new model for the creation, display, and handling of Navigation Services dialogs and alerts.
Navigation Services 3.0 also introduced support for Unicode and, on Mac OS X, support for sheets and the
ability to specify the modality of a dialog.

Navigation Services Dialogs and Alerts

The primary dialogs created by Navigation Services are as follows:

• Open.

• Save Location.

• Choose a Volume.

• Choose a Folder.

• Choose a File.

• Choose a File Object.

The primary alerts created by Navigation Services are as follows:

• Save Changes

• Discard Changes.

A further alert, which is applicable only on Mac OS X, and for which no Navigation Services creation
function existed at the time of the first release of Mac OS X, is the Review Changes alert.

18-14 Version 1.0 Files and Navigation Services

The secondary dialogs and alerts created by Navigation Services are as follows:

• New Folder dialog.

• Replace Confirmation alert.

• Mac OS 8/9 Stationery option dialog.

Modality

On Mac OS 8/9, all primary Navigation Services dialogs are movable modal provided an application-
defined event handling (callback) function is provided.

On Mac OS X, your application should ensure that:

• The Save Location dialog, Save Changes alert, and Discard Changes alert are window-modal (that
is, sheets).

• The other primary dialogs are application-modal.

Standard User Interface Elements in Primary Dialogs

The standard user interface elements in Navigation Services primary dialogs are shown at Fig 5.

FIG 5 - STANDARD USER INTERFACE ELEMENTS IN NAVIGATION SERVICES DIALOGS

Favourite
Places and
Recent Places
sections appear
in the Location
pop-up menus.

CANCEL PUSH BUTTON DEFAULT PUSH BUTTON

SHOW PUSH
BUTTON

SORT KEY BEVEL
BUTTONS

BROWSER

LOCATION POP-UP MENU BUTTON

SHORTCUTS BEVEL BUTTON

FAVOURITES BEVEL BUTTON

RECENT BEVEL BUTTON

BROWSER LIST

SORT ORDER
BEVEL BUTTON

PREVIEW BUTTON

SIZE BOX

The standard interface element names appear in boxes

LOCATION
POP-UP MENU
BUTTON

COLUMN
BROWSER

ADD TO FAVOURITES PUSH BUTTON CANCEL PUSH BUTTON DEFAULT PUSH BUTTON

RESIZE
CONTROL

EDIT TEXT
FIELD

Preview

On Mac OS 8/9, the user can toggle a preview area on an off using the Show/Hide Preview push button in
the Open dialog. A preview of any file that contains a valid 'pnot' resource will be displayed in this area.

Files and Navigation Services Version 1.0 18-15

On Mac OS X, the preview appears in the column browser as shown at Fig 5. For files of type 'TEXT' a
preview is automatically created.

Persistence

Navigation Services has the ability to store information, and to store it on a per-application basis. This
ability is called persistence. For example, when a primary dialog is displayed, the browser defaults to the
directory location that was in use when that particular dialog was last closed by that particular application.
In addition, if a file or folder was selected when the dialog was last closed, that file or folder is
automatically selected when the dialog is re-opened. For dialogs that are not sheets, the size, position, and,
on Mac OS 8/9, sort key and sort order are also remembered for each application.

Creating and Displaying an Open Dialog

The Open dialog (see Fig 6) is created by a call to NavCreateGetFileDialog and displayed by a call to
NavDialogRun. You pass a universal procedure pointer to an application-defined event handling (callback)
function in the inEventProc parameter of NavCreateGetFileDialog.

FIG 6 - NAVIGATION SERVICES OPEN DIALOG

Note: The Show pop-up menu button appears only if a handle to a
NavTypeList structure is passed in the inTypeList parameter of the
NavCreateGetFileDialog function

The NavDialogCreationOptions Structure

You pass a pointer to a NavDialogCreationOptions structure, which specifies options controlling the
appearance and behaviour of the dialog, in the inOptions parameter of NavCreateGetFileDialog. The
NavDialogCreationOptions structure is as follows:

struct NavDialogCreationOptions
{
 UInt16 version;
 NavDialogOptionFlags optionFlags;
 Point location;
 CFStringRef clientName;
 CFStringRef windowTitle;
 CFStringRef actionButtonLabel;
 CFStringRef cancelButtonLabel;
 CFStringRef saveFileName;
 CFStringRef message;
 UInt32 preferenceKey;
 CFArrayRef popupExtension;
 WindowModality modality;
 WindowRef parentWindow;
 char reserved[16];
};
typedef struct NavDialogCreationOptions NavDialogCreationOptions;

18-16 Version 1.0 Files and Navigation Services

Field Descriptions

optionsFlags One of the following constants of type NavDialogOptionFlags:

Constant Description
kNavDefaultNavDlogOptions Use default options. Sets the following bits:

 kNavDontAddTranslateItems
 kNavAllowStationery
 kNavAllowPreviews
 kNavAllowMultipleFiles

kNavNoTypePopup Don't show file type pop-up menu button.
kNavDontAutoTranslate Don't auto-translate files. (Application will translate.)
kNavDontAddTranslateItems Don't add translation options in Show pop-up menu.
kNavAllFilesInPopup Add All Documents menu item in file type pop-up.
kNavAllowStationery Allow stationery files.
kNavAllowPreviews Allow preview to show.
kNavAllowMultipleFiles Allow multiple items to be selected.
kNavAllowInvisibleFiles Allow invisible items to be shown.
kNavDontResolveAliases Don't resolve aliases.
kNavSelectDefaultLocation Make the default location the browser selection.
kNavSelectAllReadableItem Make dialog select All Readable Documents on open.
kNavSupportPackages Recognise file system packages.
kNavAllowOpenPackages Allow opening of packages.
kNavDontAddRecents Don't add chosen objects to Recents list.
kNavDontUseCustomFrame Don't draw the custom area bevel frame.
kNavDontConfirmReplacement Don't show the "Replace File?" alert on save conflict.

location Location of the upper-left of the dialog (global coordinates). The dialog will appear
at the location at which it was last closed if the optionFlags field is assigned NULL or
this field is assigned (-1,-1).

clientName Name of your application. This will appear in the dialog's title bar.

windowTitle Overrides the default window title.

actionButtonLabel Title for the dialog’s OK push button. If a title is not assigned, the push button will
use the default title (Open or Save).

cancelButtonLabel Title for the dialog’s Cancel push button. If a title is not assigned, the push button
will use the default title (Cancel).

savedFileName Default file name for a saved file.

message A string, which is displayed in the dialog, providing additional instructions to the
user. (For an example, see Fig 11).

preferenceKey A value that identifies the set of dialog preferences that should be used. Assign 0 if
you do not wish to provide a preference key.

popupExtension A handle to one or more structures of type NavMenuItemSpec used to add extra menu
items to an Open dialog's Show pop-up menu or a Save Location dialog's Format pop-
up menu.

modality The dialog's modality (relevant on Mac OS X only). Relevant Window Manager
constants are:

kWindowModalityNone
kWindowModalitySystemModal
kWindowModalityAppModal
kWindowModalityWindowModal

parentWindow The dialog's parent window. (Relevant on Mac OS X only when the dialog is
window-modal.)

Files and Navigation Services Version 1.0 18-17

The function NavGetDefaultDialogCreationOptions may be called to initialise a structure of type
NavDialogCreationOptions with the default dialog options, which are as follows:

• Show and Format pop-up menu buttons are displayed in the Open and Save Location dialogs (Mac
OS 8/9).

• Files are auto-translated. (This implies that the application will not translate.)

• Translation options are not included in the Show pop-up menu in the Open dialog.

• The All Documents item is not included in the Show pop-up menu in the Open dialog.

• The Stationery Option… item is included in the Format pop-up menu in the Save Location dialog.

• Previews of selected files, when available, are displayed in the Open dialog.

• Selection of multiple files in the browser list/column browser in the Open dialog is allowed.

• Invisible files are nor displayed.

• Aliases are not resolved.

• The default location in the browser list/column browser is not selected.

• The All Readable Documents is not made the default selection in the Show pop-up menu in the Open
dialog.

• File system packages are not displayed.

• File system packages cannot be opened and navigated.

• Chosen file objects are added to the Recents list.

• A border is drawn around the custom area.

• The default titles for the OK and Cancel buttons are used.

• No message is displayed in the dialog.

The Show Pop-up Menu

The types of files to be displayed in the browser list may be chosen from a list of available file types in the
Show pop-up menu in the Open dialog (see Fig 7). This list is built from information supplied by your
application in a structure of type NavTypeList (see below), a handle to which you pass in the inTypeList
parameter of NavCreateGetFileDialog.

FIG 7 - THE SHOW POP-UP MENU AND FILE TYPE OPTIONS (MAC OS 8/9)

Choosing this item displays all files of types that can be opened by the application, regardless of whether they were created by the application or not.

Choosing the first item in this section displays all native file types. Choosing the other items in this section
displays only those native files of a particular type. Native file types are those whose type and creator codes
appear in the NavTypeList structure whose handle is passed in the call to the NavCreateGetFileDialog function.
(The NavTypeList structure has the same format as an 'open' resource.)

Choosing this item displays all files regardless of whether they can be opened by the application or not. This item appears if your application sets
the kNavAllFilesInPopup bit in the optionsFlags field of the NavDialogCreationOptions structure.

This section appears if the kNavDontAddTranslateItems bit is cleared in the optionsFlags field of the
NavDialogCreationOptions structure.

The Show pop-up menu button will not appear in the Open dialog if you pass NULL in the inTypeList
parameter of the NavCreateGetFileDialog function or if you set the kNavNoTypePopup bit in the optionsFlags
field of the NavDialogCreationOptions structure passed in the call to NavCreateGetFileDialog.

18-18 Version 1.0 Files and Navigation Services

If a handle to a NavTypeList structure is passed in the inTypeList parameter and the kNavNoTypePopup bit is
set:

• All items in the browser will be deactivated except for the file types specified in the NavTypeList
structure whether they were created by the application or not.

• The Show pop-up menu button will not appear.

Native File Types Section

The first item in the native file types section of the Mac OS 8/9 Show pop-up menu defaults to All Known
Documents if you do not assign the name of your application to the clientName field of the
NavDialogCreationOptions structure passed in the dialogOptions parameter of the NavCreateGetFileDialog
function.

The remaining items in the native file types section will default to <Application Name> Document unless you
provide kind strings to describe the file types included in your NavTypeList structure (see below). For Mac
OS 8/9, you can do this by including a kind resource (a resource of type 'kind') in your application's
resource fork. Fig 8 shows the structure of a compiled 'kind' resource and such a resource being created
using Resorcerer.2

FIG 8 - STRUCTURE OF A COMPILED 'kind' RESOURCE AND CREATING A 'kind' RESOURCE USING RESORCERER

APPLICATION SIGNATURE

REGION CODE

FILLER

KIND ARRAY COUNT

2

2

FIRST FILE TYPE

BYTES

4

4

2

4

COMPILED 'kind' RESOURCERESORCERER 'kind' RESOURCE EDITING WINDOW

FIRST KIND STRING

LAST FILE TYPE

ALIGNMENT BYTES

LAST KIND STRING

ALIGNMENT BYTES

1 TO 256

1 TO 256

Note: The special file type 'apnm' has been included so that, whenever Navigation Services encounters a document that belongs to your application, but whose
file type has not been included in the 'kind' resource, a kind string in the form "<application name> document" will be generated.

For Mac OS X, the 'kind' resource is ignored if you provide necessary information in your application's
'plst' resource. The relevant keys are CFBundleDevelopmentRegion, CFBundleSignature, and
CFBundleDocumentTypes. 'apnm' as a CFBundleTypeOSTypes has same effect as in 'kind' resource.

The NavTypeList Structure

The NavTypeList structure, which defines the list of file types that your application is capable of opening, is
as follows:

struct NavTypeList
{
 OSType componentSignature; // Your application signature.
 short reserved;
 short osTypeCount; // How many file types will be defined.
 OSType osType[1]; // A list of file types your application can open.
};

2 The kind strings from your application's 'kind' resource also appear in the Kind column in Finder window list views.

Files and Navigation Services Version 1.0 18-19

typedef struct NavTypeList NavTypeList;
typedef NavTypeList *NavTypeListPtr;
typedef NavTypeListPtr *NavTypeListHandle;

You can create your file type list dynamically or you can use an 'open' resource. Fig 9 shows the structure
of a compiled 'open' resource and such a resource being created using Resorcerer.

FIG 9 - STRUCTURE OF A COMPILED 'open' RESOURCE AND CREATING AN 'open' RESOURCE USING RESORCERER

APPLICATION SIGNATURE

FILLER

FILE TYPE COUNT

FIRST FILE TYPE

2

2

LAST FILE TYPE

BYTES

4

4

4

COMPILED 'open' RESOURCE

RESORCERER 'open' RESOURCE EDITING WINDOW

Creating and Displaying a Save Location Dialog

The Save Location dialog (see Fig 10) is created by a call to NavCreatePutFileDialog and displayed by a call
to NavDialogRun. You pass a universal procedure pointer to an application-defined event handling
(callback) function in the inEventProc parameter of NavCreatePutFileDialog.

As with NavCreateGetFileDialog, you pass a pointer to a NavDialogCreationOptions structure in the inOptions
parameter of NavCreatePutFileDialog. Other parameters allow you to specify file type and file creator.

18-20 Version 1.0 Files and Navigation Services

FIG 10 - THE SAVE LOCATION DIALOG BOX (PARTIAL) AND ASSOCIATED DIALOGS AND ALERTS

The first item is defined by the file type and creator specified by your application in the infileType and inFileCreator
parameters of the NavCreatePutFileDialog function.
The Stationery Option item displays the Stationery Option dialog, which lets the user decide whether a new document
or a copy of a document should be saved as a document or as stationery.

When the user selects the Name edit text item, the default push button title reverts to Save.
When no filename is displayed in the Name edit text item, the default push button is disabled.

The New push button creates a new folder.

The New Folder push button enables the user to create
a new folder for saving a document.

If the user types an existing
name in the Name: edit text
field and clicks the Save button,
the Replace Confirmation alert
is presented.

The Format pop-up menu button will not appear in the Save Location dialog if you set the
kNavNoTypePopup bit in the optionsFlags field of the NavDialogCreationOptions structure.

When the user selects a folder, the default push button
title toggles from Save to Open.

If the user types an existing
name in the Save As: edit text
field and clicks the Save button,
the Replace Confirmation alert is
presented.

The Mac OS 8/9 Save Location dialog contains a Format pop-up menu button by default. The standard Mac OS X Save Location dialog does not contain a
Format pop-up menu button.

MINIMAL (COLLAPSED) SAVE LOCATION DIALOG

EXPANDED SAVE LOCATION DIALOG

Creating and Displaying a Choose a Folder Dialog

The Choose a Folder dialog (see Fig 11) is created by a call to NavCreateChooseFolderDialog and displayed
by a call to NavDialogRun. You pass a universal procedure pointer to an application-defined event handling
(callback) function in the inEventProc parameter of NavCreateChooseFolderDialog and a pointer to a
NavDialogCreationOptions structure in the inOptions parameter.

The other dialogs in the Choose family are created and displayed in a similar manner:

• The Choose a Volume dialog is created by a call to NavCreateChooseVolumeDialog.

• The Choose a File dialog is created by a call to NavCreateChooseFileDialog, and may be used when
you want the user to select a file for a purpose other than opening. The file could be, for example, a
preferences file or a dictionary file.

• The Choose a File Object dialog is created by a call to NavCreateChooseObjectDialog, and may be
used when you need the user to select an object that might be one of several different types.

Files and Navigation Services Version 1.0 18-21

FIG 11 - CHOOSE A FOLDER DIALOG

If a string is assigned to the message field of the
NavDialogCreationOptions structure, it is displayed here.

The browser list (Mac OS 8/9) and column browser (Mac OS X) in
the Choose a Folder dialog displays only directories and volumes.

Creating and Displaying Primary Alerts

Save Changes Alert

The Save Changes alert (see Fig 12) is created by a call to NavCreateAskSaveChangesDialog and displayed by
a call to NavDialogRun. You pass a universal procedure pointer to an application-defined event handling
(callback) function in the inEventProc parameter of NavCreateAskSaveChangesDialog and a pointer to a
NavDialogCreationOptions structure in the inOptions parameter.

FIG 12 - SAVE CHANGES ALERTS (CLOSING DOCUMENT AND QUITTING APPLICATION)

One of the following constants is passed in the inAction parameter of the NavCreateAskSaveChangesDialog
function:

kNavSaveChangesClosingDocument = 1
kNavSaveChangesQuittingApplication = 2
kNavSaveChangesOther = 0

Discard Changes Alert

To support the Revert command in your application's File menu, Navigation Services provides the Discard
Changes alert. The Discard Changes alert (see Fig 13) is created by a call to
NavCreateAskDiscardChangesDialog and displayed by a call to NavDialogRun. You pass a universal procedure
pointer to an application-defined event handling (callback) function in the inEventProc parameter of
NavCreateAskDiscardChangesDialog and a pointer to a NavDialogCreationOptions structure in the inOptions
parameter.

18-22 Version 1.0 Files and Navigation Services

FIG 13 - DISCARD CHANGES ALERT

Review Changes Alert — Mac OS X

On Mac OS X, when the user attempts to quit your application when there is more than one document with
unsaved changes open, your application should present a Review Changes alert (see Fig 14). No
Navigation Services creation function existed at the time of writing; accordingly, at the time of writing, it
was necessary to create, display, and handle this alert using StandardAlert or CreateStandardAlert.

FIG 14 - REVIEW UNSAVED ALERT

A click on the Discard Changes button should cause all windows to close (without saving changes) and the
application to close down. A click on the Cancel button should cancel the Quit command, keeping the
application running. A click on the Review Changes… button should cause each window with unsaved
changes to be sequentially presented to the user with a Save Changes alert presented.

Event Handling in the Primary Dialogs

Event-Handling Function

As previously stated, you pass a universal procedure pointer to an application-defined event handling
(callback) function in the inEventProc parameter of those functions which create the Navigation Services
primary dialogs. For an event handling function named myNavEventFunction, you would declare the function
as follows:

void myNavEventFunction(NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,NavCallBackUserData callBackUD)

callBackSelector The type of event, as represented by an event message constant. Typical event
message constants and their meanings are as follows:

Constant Value Description
kNavCBUserAction 12 The user has taken an action such as clicking on an Open or

Save button.
kNavCBEvent 0 An event has occurred. Receipt of this event type allows your

handler to update other windows, track controls, etc.
kNavCBTerminate 3 The dialog is about to be closed.

callBackParms A pointer to a NavCBRec structure, which contains data used by your application to
process the event:

Files and Navigation Services Version 1.0 18-23

struct NavCBRec
{
 UInt16 version;
 NavDialogRef context;
 WindowRef window;
 Rect customRect;
 Rect previewRect;
 NavEventData eventData;
 NavUserAction userAction;
 char reserved[218];
};
typedef struct NavCBRec NavCBRec;
typedef NavCBRec *NavCBRecPtr;

callBackUD A pointer to a value passed in the inClientData parameter of the dialog creation
functions.

kNavCBUserAction Message Received

When the kNavCBUserAction message is received, your application typically calls NavDialogGetReply to obtain
the results of the dialog session, which are returned in a NavReplyRecord structure.

The NavReplyRecord Structure
struct NavReplyRecord
{
 UInt16 version;
 Boolean validRecord;
 Boolean replacing;
 Boolean isStationery;
 Boolean translationNeeded;
 AEDescList selection;
 ScriptCode keyScript;
 FileTranslationSpecArrayHandle fileTranslation;
 UInt32 reserved1;
 CFStringRef saveFileName;
 char reserved[227];
};
typedef struct NavReplyRecord NavReplyRecord;

Field Descriptions

validRecord true if the user closed a dialog by clicking the Open button in an Open dialog, the
Save button in a Save Location dialog, or the Choose button in a Choose dialog, or by
pressing the Return or Enter key. If this field is false, the remaining fields do not
contain valid data.

replacing true if the user chooses to save a file by replacing an existing file.

isStationery true if the file about to be saved should be saved as a stationery document.

translationNeeded true if translation was or will be needed for selected files in Open and Save Location
dialogs.

selection An Apple event descriptor list (AEDescList) created from FSSpec or FSRef references to
selected items. You can determine the number of items in the list by calling
AECountItems. Each selected item is described in an AEDesc structure by the descriptor
type typeFSS or typeFSRef. This descriptor can be coerced into an FSSpec or FSRef
preparatory to, for example, opening the file.

keyScript Keyboard script system used for the filename.

fileTranslation Handle to a FileTranslationSpec structure, which contains a corresponding translation
array for each file reference returned in the selection field.

saveFileName The save file name in CFString form.

18-24 Version 1.0 Files and Navigation Services

This field was introduced with Navigation Services 3.0 because there is no way to fit
a 255-character Unicode name into the name field of an FSSpec or into an FSRef. (See
selection field.)

Note 1: On Mac OS 9, you will never get a file name that won't fit into the name field
of an FSSpec structure.

Note 2: On Mac OS X, you cannot reliably convert the name in the saveFileName field
to a 31-byte Pascal string.

When your application has finished using this structure, it should dispose of it by calling the function
NavDisposeReply.

Responding to User Actions

If the validRecord field of the NavReplyRecord structure contains true, your application typically calls
NavDialogGetUserAction to determine the user action, as represented by user action constants. Typical user
action constants are as follows:

Constant Value Description
kUserActionCancel 1 The user clicked the Cancel button.
kUserActionOpen 2 The user clicked the Open button in an Open dialog.
kUserActionSaveAs 3 The user clicked the Save button in a Save Location dialog.
kUserActionChoose 4 The user clicked the Choose button in a Choose dialog

As an alternative to calling NavDialogGetUserAction, you can extract the user action from the userAction field
of the NavCBRec structure.

After determining the user action, your event handling function should take the appropriate action. For
example, if the Open button was clicked, your event handling function should proceed to open the file, or
files, selected by the user in the Open dialog.

Note that you should always call the function NavCompleteSave to complete any save operation. Amongst
other things, NavCompleteSave performs any needed translation.

kNavCBTerminate Message Received

When the kNavCBTerminate message is received, your event handler should call NavDialogDispose to dispose
of the dialog reference.

Event Handling in Primary Alerts

Your event handling function for the primary alerts should be declared in the same way as that for the
event handling function for the primary dialogs.

When the kNavCBUserAction message is received, your application should call NavDialogGetUserAction to
determine the user action, and then take the appropriate action. The user action constants relevant to the
primary alerts are as follows:

Constant Value Description
kUserActionCancel 1 The user clicked the Cancel button.
kUserActionSaveChanges 6 The user clicked the Save button in a Save Changes alert.
kUserActionDontSaveChanges 7 The user clicked the Don't Save button in a Save Changes alert.
kUserActionDiscardChanges 8 The user clicked the OK button in a Discard Changes alert.

When the appropriate action has been taken, your event handler should call NavDialogDispose to dispose of
the dialog reference.

Files and Navigation Services Version 1.0 18-25

Other Application-Defined (Callback) Functions

Application-Defined Object Filtering

If your application needs simple, straightforward object filtering, and as previously described, you simply
pass a pointer to a structure of type NavTypeList to the relevant Navigation Services function
(NavCreateGetFileDialog or NavCreateChooseFileDialog). If you desire more specific filtering, you can
provide an application-defined filter (callback) function. Filter functions give you more control over what
can and cannot be displayed. You can pass a universal procedure pointer to your filter function in calls to
the functions NavCreateGetFileDialog, NavCreateChooseFileDialog, NavCreateChooseFolderDialog,
NavCreateChooseVolumeDialog, and NavCreateChooseObjectDialog.

You can use both a NavTypeList structure and a filter function for the Open and Choose a File dialogs if you
wish, but be aware that your filter function is directly affected by the NavTypeList structure. For example, if
the NavTypeList structure contains only 'TEXT' and 'PICT' types, only 'TEXT' and 'PICT' files will be passed
into your filter function.

Your filter function should return true if an object is to be displayed. The following is an example of a
filter function that allows only text files to be displayed:

Boolean myNavFilterCallback(AEDesc *theItem, void *info,void *callBackUD,
 NavFilterModes filterMode)
{
 OSErr theErr = noErr;
 Boolean display = true;
 NavFileOrFolderInfo *theInfo;

 theInfo = (NavFileOrFolderInfo *) info;
 if(theItem->descriptorType == typeFSS)
 if(!theInfo->isFolder)
 if(theInfo->fileAndFolder.fileInfo.finderInfo.fdType != 'TEXT')
 display = false;

 return display;
}

Application-Defined (Callback) Previews

To override how previews are drawn and handled, you can create a preview function and pass a universal
procedure pointer to it in the inpreviewProc parameter of the Navigation Services functions
NavCreateGetFileDialog, NavCreateChooseFileDialog and NavCreateChooseObjectDialog:

Boolean myPreviewProc(NavCBRecPtr callBackParms,void *callBackUD);

callBackParms A pointer to a NavCBRec structure that contains event data needed for your function to draw
the preview.

callBackUD A value set by your application.

Return: true if your preview function successfully draws the file preview. If your preview function returns
false, Navigation Services will display the preview if the file contains a valid 'pnot' resource.

18-26 Version 1.0 Files and Navigation Services

Main File Manager Constants, Data Types and Functions

Constants

Read/Write Permission
fsCurPerm = 0
fsRdPerm = 1
fsWrPerm = 2
fsRdWrPerm = 3
fsRdWrShPerm = 4

File Mark Positioning Modes
fsAtMark = 0
fsFromStart = 1
fsFromLEOF = 2
fsFromMark = 3
rdVerify = 64

Data Types

File System Specification Structure
struct FSSpec
{
 short vRefNum; // Volume reference number.
 long parID; // Directory ID of parent directory.
 Str63 name; // Filename or directory name.
};
typedef struct FSSpec FSSpec;
typedef FSSpec *FSSpecPtr, **FSSpecHandle;

File System Reference
struct FSRef
{
 UInt8 hidden[80];
}

File Information Structure
struct FInfo
{
 OSType fdType; // File type.
 OSType fdCreator; // File's creator.
 unsigned short fdFlags; // Finder flags (fHasBundle, fInvisible, etc).
 Point fdLocation; // Position of top-left corner of file's icon.
 short fdFldr; // Folder containing file.
};
typedef struct FInfo FInfo;

Functions

Reading, Writing and Closing Files
OSErr FSClose(short refNum);
OSErr FSRead(short refNum,long *count,void *buffPtr);
OSErr FSWrite(short refNum,long *count,const void *buffPtr);

Manipulating the File Mark
OSErr GetFPos(short refNum,long *filePos);
OSErr SetFPos(short refNum,short posMode,long posOff);

Manipulating the End-Of-File
OSErr GetEOF(short refNum,long *logEOF);
OSErr SetEOF(short refNum,long logEOF);

Files and Navigation Services Version 1.0 18-27

Opening and Creating Files
OSErr FSpOpenDF(const FSSpec *spec,SInt8 permission,short *refNum);
OSErr FSpOpenRF(const FSSpec *spec,SInt8 permission,short *refNum);
OSErr FSpCreate(const FSSpec *spec,OSType creator,OSType fileType,ScriptCode scriptTag);
OSErr FSCreateFileUnicode(const FSRef *parentRef,UniCharCount nameLength,const UniChar *name,
 FSCatalogInfoBitmap whichInfo,const FSCatalogInfo *catalogInfo,FSRef *newRef,
 FSSpec *newSpec);

Deleting Files and Directories
OSErr FSpDelete(const FSSpec *spec);
OSErr FSDeleteObject(const FSRef *ref);

Exchanging Data in Two Files
OSErr FSpExchangeFiles(const FSSpec *source,const FSSpec *dest);
OSErr FSExchangeObjects(const FSRef *ref,const FSRef *destRef);

Creating File System Specifications and File System References
OSErr FSMakeFSSpec(short vRefNum,long dirID,ConstStr255Param fileName,FSSpec *spec);
OSErr FSpMakeFSRef(const FSSpec *source,FSRef *newRef);
OSErr FSMakeFSRefUnicode(const FSRef *parentRef,UniCharCount nameLength,const UniChar *name,
 TextEncoding textEncodingHint,FSRef *newRef)

Obtaining Volume Information
OSErr GetVInfo(short drvNum,StringPtr volName,short *vRefNum,long *freeBytes);
OSErr GetVRefNum(short fileRefNum,short *vRefNum);

Getting and Setting Finder Information
OSErr FSpGetFInfo(FSSpec *spec,FInfo *fndrInfo);
OSErr FSpSetFInfo(const FSSpec *spec,const FInfo *fndrInfo);

Relevant Resource Manager Functions

Creating and Opening Resource Files
void FSpCreateResFile(const FSSpec *spec,OSType creator,OSType fileType,
 ScriptCode scriptTag);
short FSpOpenResFile(const FSSpec *spec,SignedByte permission);

Relevant Finder Interface Functions

Find a Specified Folder
OSErr FindFolder(short vRefNum,OSType folderType,Boolean createFolder,
 short *foundVRefNum,long *foundDirID)

Main Navigation Services Constants, Data Types, and Functions

Constants

Dialog Option Flags
kNavDefaultNavDlogOptions = 0x000000E4
kNavNoTypePopup = 0x00000001
kNavDontAutoTranslate = 0x00000002
kNavDontAddTranslateItems = 0x00000004
kNavAllFilesInPopup = 0x00000010
kNavAllowStationery = 0x00000020
kNavAllowPreviews = 0x00000040
kNavAllowMultipleFiles = 0x00000080
kNavAllowInvisibleFiles = 0x00000100
kNavDontResolveAliases = 0x00000200
kNavSelectDefaultLocation = 0x00000400
kNavSelectAllReadableItem = 0x00000800
kNavSupportPackages = 0x00001000
kNavAllowOpenPackages = 0x00002000

18-28 Version 1.0 Files and Navigation Services

kNavDontAddRecents = 0x00004000
kNavDontUseCustomFrame = 0x00008000
kNavDontConfirmReplacement = 0x00010000

Event Messages
kNavCBEvent = 0
kNavCBCustomize = 1
kNavCBStart = 2
kNavCBTerminate = 3
kNavCBAdjustRect = 4
kNavCBNewLocation = 5
kNavCBShowDesktop = 6
kNavCBSelectEntry = 7
kNavCBPopupMenuSelect = 8
kNavCBAccept = 9
kNavCBCancel = 10
kNavCBAdjustPreview = 11
kNavCBUserAction = 12
kNavCBOpenSelection = (long) 0x80000000

User Action
kNavUserActionNone = 0
kNavUserActionCancel = 1
kNavUserActionOpen = 2
kNavUserActionSaveAs = 3
kNavUserActionChoose = 4
kNavUserActionNewFolder = 5
kNavUserActionSaveChanges = 6
kNavUserActionDontSaveChanges = 7
kNavUserActionDiscardChanges = 8

Save Changes Action
kNavSaveChangesClosingDocument = 1
kNavSaveChangesQuittingApplication = 2

Data Types
typedef struct __NavDialog *NavDialogRef;
typedef UInt32 NavDialogOptionFlags;
typedef SInt32 NavEventCallbackMessage;
typedef void *NavCallBackUserData;
typedef UInt32 NavUserAction;
typedef UInt32 NavAskSaveChangesAction;

NavDialogCreationOptions
struct NavDialogCreationOptions
{
 UInt16 version;
 NavDialogOptionFlags optionFlags;
 Point location;
 CFStringRef clientName;
 CFStringRef windowTitle;
 CFStringRef actionButtonLabel;
 CFStringRef cancelButtonLabel;
 CFStringRef saveFileName;
 CFStringRef message;
 UInt32 preferenceKey;
 CFArrayRef popupExtension;
 WindowModality modality;
 WindowRef parentWindow;
 char reserved[16];
};
typedef struct NavDialogCreationOptions NavDialogCreationOptions;

NavTypeList
struct NavTypeList
{
 OSType componentSignature;

Files and Navigation Services Version 1.0 18-29

 short reserved;
 short osTypeCount;
 OSType osType[1];
};
typedef struct NavTypeList NavTypeList;
typedef NavTypeList *NavTypeListPtr;
typedef NavTypeListPtr *NavTypeListHandle;

NavCBRec
struct NavCBRec
{
 UInt16 version;
 NavDialogRef context;
 WindowRef window;
 Rect customRect;
 Rect previewRect;
 NavEventData eventData;
 NavUserAction userAction;
 char reserved[218];
};
typedef struct NavCBRec NavCBRec;
typedef NavCBRec *NavCBRecPtr;

NavReplyRecord
struct NavReplyRecord
{
 UInt16 version;
 Boolean validRecord;
 Boolean replacing;
 Boolean isStationery;
 Boolean translationNeeded;
 AEDescList selection;
 ScriptCode keyScript;
 FileTranslationSpecArrayHandle fileTranslation;
 UInt32 reserved1;
 CFStringRef saveFileName;
 char reserved[227];
};
typedef struct NavReplyRecord NavReplyRecord;

Functions

Initialising the NavDialogCreationOptions Structure
OSStatus NavGetDefaultDialogCreationOptions(NavDialogCreationOptions *outOptions);

Creating and Disposing Of Navigation Services Dialogs
OSStatus NavCreateGetFileDialog(const NavDialogCreationOptions *inOptions,
 NavTypeListHandle inTypeList,NavEventUPP inEventProc,NavPreviewUPP inPreviewProc,
 NavObjectFilterUPP inFilterProc,void *inClientData,NavDialogRef *outDialog);
OSStatus NavCreatePutFileDialog(const NavDialogCreationOptions *inOptions,
 OSType inFileType,OSType inFileCreator,NavEventUPP inEventProc,
 void *inClientData,NavDialogRef *outDialog);
OSStatus NavCreateAskSaveChangesDialog(const NavDialogCreationOptions *inOptions,
 NavAskSaveChangesAction inAction,NavEventUPP inEventProc,void *inClientData,
 NavDialogRef *outDialog);
OSStatus NavCreateAskDiscardChangesDialog(const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,void *inClientData,NavDialogRef *outDialog);
OSStatus NavCreateChooseFileDialog(const NavDialogCreationOptions *inOptions,
 NavTypeListHandle inTypeList,NavEventUPP inEventProc,NavPreviewUPP inPreviewProc,
 NavObjectFilterUPP inFilterProc,void *inClientData,NavDialogRef *outDialog);
OSStatus NavCreateChooseVolumeDialog(const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,NavObjectFilterUPP inFilterProc,void *inClientData,
 NavDialogRef *outDialog);
OSStatus NavCreateChooseObjectDialog(const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,NavPreviewUPP inPreviewProc,
 NavObjectFilterUPP inFilterProc,void *inClientData,NavDialogRef *outDialog);
void NavDialogDispose(NavDialogRef inDialog);

18-30 Version 1.0 Files and Navigation Services

Displaying and Running a Navigation Services Dialog
OSStatus NavDialogRun(NavDialogRef inDialog);

Filling In and Disposing Of NavReplyRecord Structures
OSStatus NavDialogGetReply(NavDialogRef inDialog,NavReplyRecord *outReply);
OSErr NavDisposeReply(NavReplyRecord *reply);

Getting the User Action
NavUserAction NavDialogGetUserAction(NavDialogRef inDialog);

Getting and Setting the Save File Name
CFStringRef NavDialogGetSaveFileName(NavDialogRef inPutFileDialog);
OSStatus NavDialogSetSaveFileName(NavDialogRef inPutFileDialog,CFStringRef inFileName);

Completing a Save Operation
OSErr NavCompleteSave(NavReplyRecord *reply,NavTranslationOptions howToTranslate);

Getting the Window In Which a Navigation Services Dialog Appears
WindowRef NavDialogGetWindow(NavDialogRef inDialog);

Creating New Folders
OSStatus NavCreateNewFolderDialog(const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,void *inClientData,NavDialogRef *outDialog);

Creating Previews
OSErr NavCreatePreview(AEDesc *theObject,OSType previewDataType,
 const void *previewData,Size previewDataSize);

Creating and Disposing of Universal Procedure Pointers
NavEventUPP NewNavEventUPP(NavEventProcPtr userRoutine);
NavPreviewUPP NewNavPreviewUPP(NavPreviewProcPtr userRoutine);
NavObjectFilterUPP NewNavObjectFilterUPP(NavObjectFilterProcPtr userRoutine);
void DisposeNavEventUPP(NavEventUPP userUPP);
void DisposeNavPreviewUPP(NavPreviewUPP userUPP);
void DisposeNavObjectFilterUPP(NavObjectFilterUPP userUPP);

Application-Defined (Callback) Functions - Event Handling, Previews, and Filters
void myNavEventFunction(NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,void *callBackUD);
Boolean myNavPreviewFunction(NavCBRecPtr callBackParms,void *callBackUD);
Boolean myNavObjectFilterFunction(AEDesc *theItem,void *info,void *callBackUD,
 NavFilterModes filterMode);

Files and Navigation Services Version 1.0 18-31

Demonstration Program Files Listing
// ***
// Files.h CARBON EVENT MODEL
// ***
//
// This program demonstrates:
//
// • File operations associated with:
//
// • The user invoking the Open…, Close, Save, Save As…, Revert, and Quit commands of a
// typical application.
//
// • Handling of the required Apple events Open Application, Re-open Application, Open
// Documents, Print Documents, and Quit Application.
//
// • File synchronisation.
//
// • The creation, display, and handling of Open, Save Location, Choose a Folder, Save
// Changes, Discard Changes, and Review Unsaved dialogs and alerts using the new model
// introduced with Navigation Services 3.0.
//
// To keep the code not specifically related to files and file-handling to a minimum, an item
// is included in the Demonstration menu which allows the user to simulate "touching" a window
// (that is, modifying the contents of the associated document). Choosing the first menu item
// in this menu sets the window-touched flag in the window's document structure to true and
// draws the text "WINDOW TOUCHED" in the window in a large font size, this latter so that the
// user can keep track of which windows have been "touched".
//
// This program is also, in part, an extension of the demonstration program Windows2 in that
// it also demonstrates certain file-related Window Manager features introduced with the Mac
// OS 8.5 Window Manager. These features are:
//
// • Window proxy icons.
//
// • Window path pop-up menus.
//
// Those sections of the source code relating to these features are identified with ///// at
// the right of each line.
//
// The program utilises the following resources:
//
// • A 'plst' resource containing an information property list which provides information
// to the Mac OS X Finder.
//
// • An 'MBAR' resource, and 'MENU' and 'xmnu' resources for Apple, File, Edit and
// Demonstration menus (preload, non-purgeable).
//
// • A 'STR ' resource containing the "missing application name" string, which is copied to
// all document files created by the program.
//
// • 'STR#' resources (purgeable) containing error strings, the application's name (for
// certain Navigation Services functions), and a message string for the Choose a Folder
// dialog.
//
// • An 'open' resource (purgeable) containing the file type list for the Open dialog.
//
// • A 'kind' resource (purgeable) describing file types, which is used by Navigation
// Services to build the native file types section of the Show pop-up menu in the Open
// dialog.
//
// • Two 'pnot' resources (purgeable) which, together with an associated 'PICT' resource
// (purgeable) and a 'TEXT' resource created by the program, provide the previews for
// the PICT and, on Mac OS 8/9, TEXT files.
//
// • The 'BNDL' resource (non-purgeable), 'FREF' resources (non-purgeable), signature
// resource (non-purgeable), and icon family resources (purgeable), required to support the
// built application on Mac OS 8/9.

18-32 Version 1.0 Files and Navigation Services

//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

// …… includes

#include <Carbon.h>

// ……… defines

#define rMenubar 128
#define mAppleApplication 128
#define Apple_About 'abou'
#define mFile 129
#define File_New 'new '
#define File_Open 'open'
#define File_Close 'clos'
#define File_Save 'save'
#define File_SaveAs 'sava'
#define File_Revert 'reve'
#define File_Quit 'quit'
#define iQuit 12
#define mDemonstration 131
#define Demo_TouchWindow 'touc'
#define Demo_ChooseAFolderDialog 'choo'
#define rErrorStrings 128
#define eInstallHandler 1000
#define eMaxWindows 1001
#define eCantFindFinderProcess 1002 /////
#define rMiscStrings 129
#define sApplicationName 1
#define sChooseAFolder 2
#define rOpenResource 128
#define kMaxWindows 10
#define kFileCreator 'Kjbb'
#define kFileTypeTEXT 'TEXT'
#define kFileTypePICT 'PICT'
#define kOpen 0
#define kPrint 1
#define MIN(a,b) ((a) < (b) ? (a) : (b))

// …… typedefs

typedef struct
{
 TEHandle editStrucHdl;
 PicHandle pictureHdl;
 SInt16 fileRefNum;
 FSSpec fileFSSpec;
 AliasHandle aliasHdl;
 Boolean windowTouched;
 NavDialogRef modalToWindowNavDialogRef;
 NavEventUPP askSaveDiscardEventFunctionUPP;
 Boolean isAskSaveChangesDialog;
} docStructure, *docStructurePointer, **docStructureHandle;

// ……… function prototypes

void main (void);
void eventLoop (void);
void doPreliminaries (void);
void doInstallAEHandlers (void);
OSStatus appEventHandler (EventHandlerCallRef,EventRef,void *);
OSStatus windowEventHandler (EventHandlerCallRef,EventRef,void *);
void doIdle (void);
void doDrawContent (WindowRef);
void doMenuChoice (MenuCommand);

Files and Navigation Services Version 1.0 18-33

void doAdjustMenus (void);
void doErrorAlert (SInt16);
void doCopyPString (Str255,Str255);
void doConcatPStrings (Str255,Str255);
void doTouchWindow (void);
OSErr openAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
OSErr reopenAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
OSErr openAndPrintDocsEventHandler (AppleEvent *,AppleEvent *,SInt32);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
OSErr doHasGotRequiredParams (AppleEvent *);
SInt16 doReviewChangesAlert (SInt16);

OSErr doNewCommand (void);
OSErr doOpenCommand (void);
OSErr doCloseCommand (NavAskSaveChangesAction);
OSErr doSaveCommand (void);
OSErr doSaveAsCommand (void);
OSErr doRevertCommand (void);

OSErr doNewDocWindow (Boolean,OSType,WindowRef *);
EventHandlerUPP doGetHandlerUPP (void);
OSErr doCloseDocWindow (WindowRef);
OSErr doOpenFile (FSSpec,OSType);
OSErr doReadTextFile (WindowRef);
OSErr doReadPictFile (WindowRef);
OSErr doCreateAskSaveChangesDialog (WindowRef,docStructureHandle,NavAskSaveChangesAction);
OSErr doSaveUsingFSSpec (WindowRef,NavReplyRecord *);
OSErr doSaveUsingFSRef (WindowRef,NavReplyRecord *);
OSErr doWriteFile (WindowRef);
OSErr doWriteTextData (WindowRef,SInt16);
OSErr doWritePictData (WindowRef,SInt16);

void getFilePutFileEventFunction (NavEventCallbackMessage,NavCBRecPtr,NavCallBackUserData);
void askSaveDiscardEventFunction (NavEventCallbackMessage,NavCBRecPtr,NavCallBackUserData);

OSErr doCopyResources (WindowRef);
OSErr doCopyAResource (ResType,SInt16,SInt16,SInt16);

void doSynchroniseFiles (void);
OSErr doChooseAFolderDialog (void);

// ***
// Files.c
// ***

// …… includes

#include "Files.h"

// …… global variables

Boolean gRunningOnX = false;
SInt16 gAppResFileRefNum;
NavEventUPP gGetFilePutFileEventFunctionUPP ;
Boolean gQuittingApplication = false;

extern SInt16 gCurrentNumberOfWindows;
extern Rect gDestRect,gViewRect;

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 EventTypeSpec applicationEvents[] = { { kEventClassApplication, kEventAppActivated },
 { kEventClassCommand, kEventProcessCommand },
 { kEventClassMenu, kEventMenuEnableItems } };

18-34 Version 1.0 Files and Navigation Services

 EventLoopTimerRef timerRef;

 // …… do preliminaries

 doPreliminaries();

 // ………………………………………………………………………………………… save application's resource file file reference number

 gAppResFileRefNum = CurResFile();

 // ……… set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 doErrorAlert(MemError());
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 }

 gRunningOnX = true;
 }
 else
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 SetMenuItemCommandID(menuRef,iQuit,kHICommandQuit);
 }

 // ……… install required Apple event handlers

 doInstallAEHandlers();

 // ……… install application event handler

 InstallApplicationEventHandler(NewEventHandlerUPP((EventHandlerProcPtr) appEventHandler),
 GetEventTypeCount(applicationEvents),applicationEvents,
 0,NULL);

 // …… install a timer (for file synchronisation)

 InstallEventLoopTimer(GetCurrentEventLoop(),0,TicksToEventTime(15),
 NewEventLoopTimerUPP((EventLoopTimerProcPtr) doIdle),NULL,
 &timerRef);

 // …………… get universal procedure pointer to main Navigation Services services event function

 gGetFilePutFileEventFunctionUPP =
 NewNavEventUPP((NavEventProcPtr) getFilePutFileEventFunction);

 // …… run application event loop

 RunApplicationEventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{
 MoreMasterPointers(448);
 InitCursor();

Files and Navigation Services Version 1.0 18-35

}

// *** doInstallAEHandlers

void doInstallAEHandlers(void)
{
 OSErr osError;

 osError = AEInstallEventHandler(kCoreEventClass,kAEOpenApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) openAppEventHandler),
 0L,false);
 if(osError != noErr) doErrorAlert(eInstallHandler);

 osError = AEInstallEventHandler(kCoreEventClass,kAEReopenApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) reopenAppEventHandler),
 0L,false);
 if(osError != noErr) doErrorAlert(eInstallHandler);

 osError = AEInstallEventHandler(kCoreEventClass,kAEOpenDocuments,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) openAndPrintDocsEventHandler),
 kOpen,false);
 if(osError != noErr) doErrorAlert(eInstallHandler);

 osError = AEInstallEventHandler(kCoreEventClass,kAEPrintDocuments,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) openAndPrintDocsEventHandler),
 kPrint,false);
 if(osError != noErr) doErrorAlert(eInstallHandler);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr) doErrorAlert(eInstallHandler);
}

// *** appEventHandler

OSStatus appEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void * userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 HICommand hiCommand;
 MenuID menuID;
 MenuItemIndex menuItem;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassApplication:
 if(eventKind == kEventAppActivated)
 SetThemeCursor(kThemeArrowCursor);
 break;

 case kEventClassCommand:
 if(eventKind == kEventProcessCommand)
 {
 GetEventParameter(eventRef,kEventParamDirectObject,typeHICommand,NULL,
 sizeof(HICommand),NULL,&hiCommand);
 menuID = GetMenuID(hiCommand.menu.menuRef);
 menuItem = hiCommand.menu.menuItemIndex;
 if((hiCommand.commandID != kHICommandQuit) &&
 (menuID >= mAppleApplication && menuID <= mDemonstration))
 {
 doMenuChoice(hiCommand.commandID);
 result = noErr;
 }

18-36 Version 1.0 Files and Navigation Services

 }
 break;

 case kEventClassMenu:
 if(eventKind == kEventMenuEnableItems)
 {
 doAdjustMenus();
 result = noErr;
 }
 break;
 }

 return result;
}

// ** windowEventHandler

OSStatus windowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void* userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 WindowRef windowRef;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassWindow:
 GetEventParameter(eventRef,kEventParamDirectObject,typeWindowRef,NULL,sizeof(windowRef),
 NULL,&windowRef);
 switch(eventKind)
 {
 case kEventWindowDrawContent:
 doDrawContent(windowRef);
 result = noErr;
 break;

 case kEventWindowClose:
 if(gQuittingApplication)
 doCloseCommand(kNavSaveChangesQuittingApplication);
 else
 doCloseCommand(kNavSaveChangesClosingDocument);
 result = noErr;
 break;
 }
 break;
 }

 return result;
}

// ** doIdle

void doIdle(void)
{
 if(GetWindowKind(FrontWindow()) == kApplicationWindowKind)
 doSynchroniseFiles();
}

// ** doUpdate

void doDrawContent(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 GrafPtr oldPort;
 Rect destRect;

Files and Navigation Services Version 1.0 18-37

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 GetPort(&oldPort);
 SetPortWindowPort(windowRef);

 if((*docStrucHdl)->pictureHdl)
 {
 destRect = (*(*docStrucHdl)->pictureHdl)->picFrame;
 OffsetRect(&destRect,170,54);
 HLock((Handle) (*docStrucHdl)->pictureHdl);
 DrawPicture((*docStrucHdl)->pictureHdl,&destRect);
 HUnlock((Handle) (*docStrucHdl)->pictureHdl);
 }
 else if((*docStrucHdl)->editStrucHdl)
 {
 HLock((Handle) (*docStrucHdl)->editStrucHdl);
 TEUpdate(&gDestRect,(*docStrucHdl)->editStrucHdl);
 HUnlock((Handle) (*docStrucHdl)->editStrucHdl);
 }

 if((*docStrucHdl)->windowTouched)
 {
 TextSize(48);
 MoveTo(30,170);
 DrawString("\pWINDOW TOUCHED");
 TextSize(12);
 }

 SetPort(oldPort);
}

// ** doMenuChoice

void doMenuChoice(MenuCommand commandID)
{
 OSErr osError = noErr;

 switch(commandID)
 {
 // …… Apple/Application menu

 case Apple_About:
 SysBeep(10);
 break;

 // ……… File menu

 case File_New:
 if(osError = doNewCommand())
 doErrorAlert(osError);
 break;

 case File_Open:
 if(osError = doOpenCommand() && osError == opWrErr)
 doErrorAlert(osError);
 break;

 case File_Close:
 if(osError = doCloseCommand(kNavSaveChangesClosingDocument))
 doErrorAlert(osError);
 break;

 case File_Save:
 if(osError = doSaveCommand())
 doErrorAlert(osError);
 break;

 case File_SaveAs:

18-38 Version 1.0 Files and Navigation Services

 if(osError = doSaveAsCommand())
 doErrorAlert(osError);
 break;

 case File_Revert:
 if(osError = doRevertCommand())
 doErrorAlert(osError);
 break;

 // …… Demonstration menu

 case Demo_TouchWindow:
 doTouchWindow();
 break;

 case Demo_ChooseAFolderDialog:
 if(osError = doChooseAFolderDialog())
 doErrorAlert(osError);
 break;
 }
}

// *** doAdjustMenus

void doAdjustMenus(void)
{
 OSErr osError;
 MenuRef menuRef;
 WindowRef windowRef;
 docStructureHandle docStrucHdl;

 if(gCurrentNumberOfWindows > 0)
 {
 if(gRunningOnX)
 {
 if((osError = GetSheetWindowParent(FrontWindow(),&windowRef)) == noErr)
 {
 menuRef = GetMenuRef(mFile);
 DisableMenuCommand(menuRef,File_Close);
 DisableMenuCommand(menuRef,File_Save);
 DisableMenuCommand(menuRef,File_SaveAs);
 DisableMenuCommand(menuRef,File_Revert);
 menuRef = GetMenuRef(mDemonstration);
 DisableMenuCommand(menuRef,Demo_TouchWindow);
 return;
 }
 else
 windowRef = FrontWindow();
 }
 else
 windowRef = FrontWindow();

 if(GetWindowKind(windowRef) == kApplicationWindowKind)
 {
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 menuRef = GetMenuRef(mFile);
 EnableMenuCommand(menuRef,File_Close);
 if((*docStrucHdl)->windowTouched)
 {
 EnableMenuCommand(menuRef,File_Save);
 EnableMenuCommand(menuRef,File_Revert);
 }
 else
 {
 DisableMenuCommand(menuRef,File_Save);
 DisableMenuCommand(menuRef,File_Revert);
 }

Files and Navigation Services Version 1.0 18-39

 if(((*docStrucHdl)->pictureHdl != NULL) ||
 ((*(*docStrucHdl)->editStrucHdl)->teLength > 0))
 EnableMenuCommand(menuRef,File_SaveAs);
 else
 DisableMenuCommand(menuRef,File_SaveAs);

 menuRef = GetMenuRef(mDemonstration);

 if(((*docStrucHdl)->pictureHdl != NULL) ||
 ((*(*docStrucHdl)->editStrucHdl)->teLength > 0))
 {
 if((*docStrucHdl)->windowTouched == false)
 EnableMenuCommand(menuRef,Demo_TouchWindow);
 else
 DisableMenuCommand(menuRef,Demo_TouchWindow);
 }
 else
 DisableMenuCommand(menuRef,Demo_TouchWindow);
 }
 }
 else
 {
 menuRef = GetMenuRef(mFile);
 DisableMenuCommand(menuRef,File_Close);
 DisableMenuCommand(menuRef,File_Save);
 DisableMenuCommand(menuRef,File_SaveAs);
 DisableMenuCommand(menuRef,File_Revert);
 menuRef = GetMenuRef(mDemonstration);
 DisableMenuCommand(menuRef,Demo_TouchWindow);
 }

 DrawMenuBar();
}

// ** doErrorAlert

void doErrorAlert(SInt16 errorCode)
{
 Str255 errorString, theString;
 SInt16 itemHit;

 if(errorCode == eInstallHandler)
 GetIndString(errorString,rErrorStrings,1);
 else if(errorCode == eMaxWindows)
 GetIndString(errorString,rErrorStrings,2);
 else if(errorCode == eCantFindFinderProcess)
 GetIndString(errorString,rErrorStrings,3);
 else if(errorCode == opWrErr)
 GetIndString(errorString,rErrorStrings,4);
 else
 {
 GetIndString(errorString,rErrorStrings,5);
 NumToString((SInt32) errorCode,theString);
 doConcatPStrings(errorString,theString);
 }

 if(errorCode != memFullErr)
 {
 StandardAlert(kAlertCautionAlert,errorString,NULL,NULL,&itemHit);
 }
 else
 {
 StandardAlert(kAlertStopAlert,errorString,NULL,NULL,&itemHit);
 ExitToShell();
 }
}

// *** doCopyPString

18-40 Version 1.0 Files and Navigation Services

void doCopyPString(Str255 sourceString,Str255 destinationString)
{
 SInt16 stringLength;

 stringLength = sourceString[0];
 BlockMove(sourceString + 1,destinationString + 1,stringLength);
 destinationString[0] = stringLength;
}

// ** doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{
 SInt16 appendLength;

 appendLength = MIN(appendString[0],255 - targetString[0]);

 if(appendLength > 0)
 {
 BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
 targetString[0] += appendLength;
 }
}

// *** doTouchWindow

void doTouchWindow(void)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 SetPortWindowPort(windowRef);

 TextSize(48);
 MoveTo(30,170);
 DrawString("\pWINDOW TOUCHED");
 TextSize(12);

 (*docStrucHdl)->windowTouched = true;

 SetWindowModified(windowRef,true); /////
}

// *** openAppEventHandler

OSErr openAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefCon)
{
 OSErr osError;

 osError = doHasGotRequiredParams(appEvent);
 if(osError == noErr)
 osError = doNewCommand();

 return osError;
}

// *** reopenAppEventHandler

OSErr reopenAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,
 SInt32 handlerRefCon)
{
 OSErr osError;

 osError = doHasGotRequiredParams(appEvent);
 if(osError == noErr)
 if(!FrontWindow())

Files and Navigation Services Version 1.0 18-41

 osError = doNewCommand();

 return osError;
}

// ** openAndPrintDocsEventHandler

OSErr openAndPrintDocsEventHandler(AppleEvent *appEvent,AppleEvent *reply,
 SInt32 handlerRefcon)
{
 FSSpec fileSpec;
 AEDescList docList;
 OSErr osError, ignoreErr;
 SInt32 index, numberOfItems;
 Size actualSize;
 AEKeyword keyWord;
 DescType returnedType;
 FInfo fileInfo;

 osError = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);

 if(osError == noErr)
 {
 osError = doHasGotRequiredParams(appEvent);
 if(osError == noErr)
 {
 osError = AECountItems(&docList,&numberOfItems);
 if(osError == noErr)
 {
 for(index=1;index<=numberOfItems;index++)
 {
 osError = AEGetNthPtr(&docList,index,typeFSS,&keyWord,&returnedType,
 &fileSpec,sizeof(fileSpec),&actualSize);
 if(osError == noErr)
 {
 osError = FSpGetFInfo(&fileSpec,&fileInfo);
 if(osError == noErr)
 {
 if(osError = doOpenFile(fileSpec,fileInfo.fdType))
 doErrorAlert(osError);

 if(osError == noErr && handlerRefcon == kPrint)
 {
 // Call printing function here
 }
 }
 }
 else
 doErrorAlert(osError);
 }
 }
 }
 else
 doErrorAlert(osError);

 ignoreErr = AEDisposeDesc(&docList);
 }
 else
 doErrorAlert(osError);

 return osError;
}

// *** quitAppEventHandler

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{
 OSErr osError;
 WindowRef windowRef, previousWindowRef;

18-42 Version 1.0 Files and Navigation Services

 docStructureHandle docStrucHdl;
 SInt16 touchedWindowsCount = 0;
 EventRef eventRef;
 EventTargetRef eventTargetRef;
 SInt16 itemHit;

 osError = doHasGotRequiredParams(appEvent);
 if(osError == noErr)
 {
 if(FrontWindow())
 {
 // ……………… if any window has a sheet, bring to front, play system alert sound, and return

 windowRef = GetFrontWindowOfClass(kSheetWindowClass,true);
 if(windowRef)
 {
 SelectWindow(windowRef);
 SysBeep(10);
 return noErr;
 }

 // ……… count touched windows

 windowRef = FrontWindow();
 do
 {
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 if((*docStrucHdl)->windowTouched == true)
 touchedWindowsCount++;
 previousWindowRef = windowRef;
 } while(windowRef = GetNextWindowOfClass(previousWindowRef,kDocumentWindowClass,true));

 // …… if no touched windows, simply close down

 if(touchedWindowsCount == 0)
 QuitApplicationEventLoop();

 // ……………………………………………………………………………… if touched windows are present, and if running on OS X

 if(gRunningOnX)
 {

 // …… if one touched window, cause Save Changes alert on that window, close all others

 if(touchedWindowsCount == 1)
 {
 gQuittingApplication = true;
 CreateEvent(NULL,kEventClassWindow,kEventWindowClose,0,kEventAttributeNone,
 &eventRef);
 eventTargetRef = GetWindowEventTarget(FrontWindow());
 SendEventToEventTarget(eventRef,eventTargetRef);
 }

 // …… if more than one touched window, create Review Changes alert, handle button clicks

 else if(touchedWindowsCount > 1)
 {
 itemHit = doReviewChangesAlert(touchedWindowsCount);

 if(itemHit == kAlertStdAlertOKButton)
 {
 gQuittingApplication = true;
 CreateEvent(NULL,kEventClassWindow,kEventWindowClose,0,kEventAttributeNone,
 &eventRef);
 eventTargetRef = GetWindowEventTarget(FrontWindow());
 SendEventToEventTarget(eventRef,eventTargetRef);
 }
 else if(itemHit == kAlertStdAlertCancelButton)
 gQuittingApplication = false;

Files and Navigation Services Version 1.0 18-43

 else if(itemHit == kAlertStdAlertOtherButton)
 QuitApplicationEventLoop();
 }
 }

 // ………………………………………………………………………… if touched windows are present, and if running on OS 8/9

 else
 {
 gQuittingApplication = true;
 CreateEvent(NULL,kEventClassWindow,kEventWindowClose,0,kEventAttributeNone,
 &eventRef);
 eventTargetRef = GetWindowEventTarget(FrontWindow());
 SendEventToEventTarget(eventRef,eventTargetRef);
 }
 }
 else
 QuitApplicationEventLoop();
 }

 return osError;
}

// ** doHasGotRequiredParams

OSErr doHasGotRequiredParams(AppleEvent *appEvent)
{
 DescType returnedType;
 Size actualSize;
 OSErr osError;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,
 NULL,0,&actualSize);
 if(osError == errAEDescNotFound)
 osError = noErr;
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

// ** doReviewChangesAlert

SInt16 doReviewChangesAlert(SInt16 touchedWindowsCount)
{
 AlertStdCFStringAlertParamRec paramRec;
 Str255 messageText1 = "\pYou have ";
 Str255 messageText2 = "\p Files documents with unsaved changes. ";
 Str255 messageText3 = "\pDo you want to review these changes before quitting?";
 Str255 countString;
 CFStringRef messageText;
 CFStringRef informativeText =
 CFSTR("If you don't review your documents, all your changes will be lost.");
 DialogRef dialogRef;
 DialogItemIndex itemHit;

 NumToString(touchedWindowsCount,countString);
 doConcatPStrings(messageText1,countString);
 doConcatPStrings(messageText1,messageText2);
 doConcatPStrings(messageText1,messageText3);
 messageText = CFStringCreateWithPascalString(NULL,messageText1,CFStringGetSystemEncoding());

 GetStandardAlertDefaultParams(¶mRec,kStdCFStringAlertVersionOne);
 paramRec.movable = true;
 paramRec.defaultText = CFSTR("Review Changes…");
 paramRec.cancelText = CFSTR("Cancel");
 paramRec.otherText = CFSTR("Discard Changes");

 CreateStandardAlert(kAlertStopAlert,messageText,informativeText,¶mRec,&dialogRef);

18-44 Version 1.0 Files and Navigation Services

 RunStandardAlert(dialogRef,NULL,&itemHit);

 if(messageText != NULL)
 CFRelease(messageText);

 return itemHit;
}

// ***
// NewOpenCloseSave.c
// ***

// …… includes

#include "Files.h"

// …… global variables

NavDialogRef gModalToApplicationNavDialogRef;
SInt16 gCurrentNumberOfWindows = 0;
Rect gDestRect, gViewRect;
Boolean gCloseDocWindow = false;

extern NavEventUPP gGetFilePutFileEventFunctionUPP;
extern SInt16 gAppResFileRefNum;
extern Boolean gQuittingApplication;
extern Boolean gRunningOnX;

// ** doNewCommand

OSErr doNewCommand(void)
{
 WindowRef windowRef;
 OSErr osError;
 OSType documentType = kFileTypeTEXT;

 osError = doNewDocWindow(true,documentType,&windowRef);

 if(osError == noErr)
 SetWindowProxyCreatorAndType(windowRef,kFileCreator,documentType,kUserDomain); /////

 return osError;
}

// *** doOpenCommand

OSErr doOpenCommand(void)
{
 OSErr osError = noErr;
 NavDialogCreationOptions dialogOptions;
 Str255 applicationName;
 NavTypeListHandle fileTypeListHdl = NULL;

 // …… create application-modal Open dialog

 osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
 if(osError == noErr)
 {
 GetIndString(applicationName,rMiscStrings,sApplicationName);
 dialogOptions.clientName = CFStringCreateWithPascalString(NULL,applicationName,
 CFStringGetSystemEncoding());
 dialogOptions.modality = kWindowModalityAppModal;
 fileTypeListHdl = (NavTypeListHandle) GetResource('open',rOpenResource);

 osError = NavCreateGetFileDialog(&dialogOptions,fileTypeListHdl,
 gGetFilePutFileEventFunctionUPP,NULL,NULL,NULL,
 &gModalToApplicationNavDialogRef);
 if(osError == noErr && gModalToApplicationNavDialogRef != NULL)
 {

Files and Navigation Services Version 1.0 18-45

 osError = NavDialogRun(gModalToApplicationNavDialogRef);
 if(osError != noErr)
 {
 NavDialogDispose(gModalToApplicationNavDialogRef);
 gModalToApplicationNavDialogRef = NULL;
 }
 }

 if(dialogOptions.clientName != NULL)
 CFRelease(dialogOptions.clientName);

 if(fileTypeListHdl != NULL)
 ReleaseResource((Handle) fileTypeListHdl);
 }

 return osError;
}

// ** doCloseCommand

OSErr doCloseCommand(NavAskSaveChangesAction action)
{
 WindowRef windowRef;
 SInt16 windowKind;
 docStructureHandle docStrucHdl;
 OSErr osError = noErr;

 windowRef = FrontWindow();
 windowKind = GetWindowKind(windowRef);

 switch(windowKind)
 {
 case kApplicationWindowKind:
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 // ………………………………………………………………………… if window has unsaved changes, create Save Changes alert

 if((*docStrucHdl)->windowTouched == true)
 {
 if(IsWindowCollapsed(windowRef))
 CollapseWindow(windowRef,false);

 osError = doCreateAskSaveChangesDialog(windowRef,docStrucHdl,action);
 }

 // ……… otherwise close file and clean up

 else
 osError = doCloseDocWindow(windowRef);
 break;

 case kDialogWindowKind:
 // Hide or close modeless dialog, as required.
 break;
 }

 return osError;
}

// *** doSaveCommand

OSErr doSaveCommand(void)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 OSErr osError = noErr;
 Rect portRect;

 windowRef = FrontWindow();

18-46 Version 1.0 Files and Navigation Services

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 // ……… if the document has a file ref number, write the file, otherwise call doSaveAsCommand

 if((*docStrucHdl)->fileRefNum)
 {
 osError = doWriteFile(windowRef);

 SetPortWindowPort(windowRef);
 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 InvalWindowRect(windowRef,&portRect);
 }
 else
 osError = doSaveAsCommand();

 if(osError == noErr) /////
 SetWindowModified(windowRef,false); /////

 return osError;
}

// *** doSaveAsCommand

OSErr doSaveAsCommand(void)
{
 OSErr osError = noErr;
 NavDialogCreationOptions dialogOptions;
 WindowRef windowRef;
 Str255 windowTitle, applicationName;
 docStructureHandle docStrucHdl;
 OSType fileType;

 // …… create window-modal Save Location dialog

 osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
 if(osError == noErr)
 {
 dialogOptions.optionFlags |= kNavNoTypePopup;

 windowRef = FrontWindow();

 GetWTitle(windowRef,windowTitle);
 dialogOptions.saveFileName = CFStringCreateWithPascalString(NULL,windowTitle,
 CFStringGetSystemEncoding());
 GetIndString(applicationName,rMiscStrings,sApplicationName);
 dialogOptions.clientName = CFStringCreateWithPascalString(NULL,applicationName,
 CFStringGetSystemEncoding());
 dialogOptions.parentWindow = windowRef;
 dialogOptions.modality = kWindowModalityWindowModal;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 if((*docStrucHdl)->editStrucHdl != NULL)
 fileType = kFileTypeTEXT;
 else if((*docStrucHdl)->pictureHdl != NULL)
 fileType = kFileTypePICT;

 HLock((Handle) docStrucHdl);

 osError = NavCreatePutFileDialog(&dialogOptions,fileType,kFileCreator,
 gGetFilePutFileEventFunctionUPP ,
 windowRef,&(*docStrucHdl)->modalToWindowNavDialogRef);
 HUnlock((Handle) docStrucHdl);

 if(osError == noErr && (*docStrucHdl)->modalToWindowNavDialogRef != NULL)
 {
 osError = NavDialogRun((*docStrucHdl)->modalToWindowNavDialogRef);
 if(osError != noErr)
 {

Files and Navigation Services Version 1.0 18-47

 NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
 (*docStrucHdl)->modalToWindowNavDialogRef = NULL;
 }
 }

 if(dialogOptions.saveFileName != NULL)
 CFRelease(dialogOptions.saveFileName);
 if(dialogOptions.clientName != NULL)
 CFRelease(dialogOptions.clientName);
 }

 return osError;
}

// *** doRevertCommand

OSErr doRevertCommand(void)
{
 OSErr osError = noErr;
 NavDialogCreationOptions dialogOptions;
 WindowRef windowRef;
 Str255 windowTitle;
 docStructureHandle docStrucHdl;

 // ……… create window-modal Discard Changes alert

 osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
 if(osError == noErr)
 {
 windowRef = FrontWindow();

 GetWTitle(windowRef,windowTitle);
 dialogOptions.saveFileName = CFStringCreateWithPascalString(NULL,windowTitle,
 CFStringGetSystemEncoding());
 dialogOptions.parentWindow = windowRef;
 dialogOptions.modality = kWindowModalityWindowModal;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 if((*docStrucHdl)->askSaveDiscardEventFunctionUPP != NULL)
 {
 DisposeNavEventUPP((*docStrucHdl)->askSaveDiscardEventFunctionUPP);
 (*docStrucHdl)->askSaveDiscardEventFunctionUPP = NULL;
 }
 (*docStrucHdl)->askSaveDiscardEventFunctionUPP =
 NewNavEventUPP((NavEventProcPtr) askSaveDiscardEventFunction);

 HLock((Handle) docStrucHdl);

 osError = NavCreateAskDiscardChangesDialog(&dialogOptions,
 (*docStrucHdl)->askSaveDiscardEventFunctionUPP,
 windowRef,
 &(*docStrucHdl)->modalToWindowNavDialogRef);
 HUnlock((Handle) docStrucHdl);

 if(osError == noErr && (*docStrucHdl)->modalToWindowNavDialogRef != NULL)
 {
 osError = NavDialogRun((*docStrucHdl)->modalToWindowNavDialogRef);
 if(osError != noErr)
 {
 NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
 (*docStrucHdl)->modalToWindowNavDialogRef = NULL;
 }
 }

 if(dialogOptions.saveFileName != NULL)
 CFRelease(dialogOptions.saveFileName);
 }

 return osError;

18-48 Version 1.0 Files and Navigation Services

}

// ** doNewDocWindow

OSErr doNewDocWindow(Boolean showWindow,OSType documentType,WindowRef * windowRef)
{
 OSStatus osError;
 WindowAttributes attributes = kWindowStandardHandlerAttribute |
 kWindowStandardDocumentAttributes;
 Rect portRect, contentRect = { 0,0,300,500 };
 docStructureHandle docStrucHdl;
 EventTypeSpec windowEvents[] = { { kEventClassWindow, kEventWindowDrawContent },
 { kEventClassWindow, kEventWindowClose },
 { kEventClassWindow, kEventWindowClickDragRgn },
 { kEventClassWindow, kEventWindowPathSelect } };

 if(gCurrentNumberOfWindows == kMaxWindows)
 return eMaxWindows;

 // ……………………………………………………… create window, change attributes, reposition, install event handler

 osError = CreateNewWindow(kDocumentWindowClass,attributes,&contentRect,windowRef);
 if(osError != noErr)
 return osError;

 SetWTitle(*windowRef,"\puntitled");
 ChangeWindowAttributes(*windowRef,0,kWindowFullZoomAttribute | kWindowResizableAttribute);
 RepositionWindow(*windowRef,NULL,kWindowCascadeOnMainScreen);
 SetPortWindowPort(*windowRef);

 InstallWindowEventHandler(*windowRef,doGetHandlerUPP(),GetEventTypeCount(windowEvents),
 windowEvents,0,NULL);

 // ……… attach document structure to window

 if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
 {
 DisposeWindow(*windowRef);
 return MemError();
 }

 SetWRefCon(*windowRef,(SInt32) docStrucHdl);

 (*docStrucHdl)->editStrucHdl = NULL;
 (*docStrucHdl)->pictureHdl = NULL;
 (*docStrucHdl)->fileRefNum = 0;
 (*docStrucHdl)->aliasHdl = NULL; /////
 (*docStrucHdl)->windowTouched = false;
 (*docStrucHdl)->modalToWindowNavDialogRef = NULL;
 (*docStrucHdl)->askSaveDiscardEventFunctionUPP = NULL;
 (*docStrucHdl)->isAskSaveChangesDialog = false;

 // ……… if text document, create TextEdit structure

 if(documentType == kFileTypeTEXT)
 {
 UseThemeFont(kThemeSmallSystemFont,smSystemScript);

 GetWindowPortBounds(*windowRef,&portRect);
 gDestRect = portRect;
 InsetRect(&gDestRect,6,6);
 gViewRect = gDestRect;

 MoveHHi((Handle) docStrucHdl);
 HLock((Handle) docStrucHdl);

 if(!((*docStrucHdl)->editStrucHdl = TENew(&gDestRect,&gViewRect)))
 {
 DisposeWindow(*windowRef);

Files and Navigation Services Version 1.0 18-49

 DisposeHandle((Handle) docStrucHdl);
 return MemError();
 }

 HUnlock((Handle) docStrucHdl);
 }

 // …… show window and increment open windows count

 if(showWindow)
 ShowWindow(*windowRef);

 gCurrentNumberOfWindows ++;

 return noErr;
}

// *** doGetHandlerUPP

EventHandlerUPP doGetHandlerUPP(void)
{
 static EventHandlerUPP windowEventHandlerUPP;

 if(windowEventHandlerUPP == NULL)
 windowEventHandlerUPP = NewEventHandlerUPP((EventHandlerProcPtr) windowEventHandler);

 return windowEventHandlerUPP;
}

// ** doCloseDocWindow

OSErr doCloseDocWindow(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 OSErr osError = noErr;
 EventRef eventRef;
 EventTargetRef eventTargetRef;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 // …………………………………………………………… close file, flush volume, dispose of window and associated memory

 if((*docStrucHdl)->fileRefNum != 0)
 {
 if(!(osError = FSClose((*docStrucHdl)->fileRefNum)))
 {
 osError = FlushVol(NULL,(*docStrucHdl)->fileFSSpec.vRefNum);
 (*docStrucHdl)->fileRefNum = 0;
 }
 }

 if((*docStrucHdl)->editStrucHdl != NULL)
 TEDispose((*docStrucHdl)->editStrucHdl);
 if((*docStrucHdl)->pictureHdl != NULL)
 KillPicture((*docStrucHdl)->pictureHdl);

 DisposeHandle((Handle) docStrucHdl);
 DisposeWindow(windowRef);

 gCurrentNumberOfWindows --;

 // ……… if quitting application

 if(gQuittingApplication)
 {
 if(FrontWindow() == NULL)
 QuitApplicationEventLoop();
 else
 {

18-50 Version 1.0 Files and Navigation Services

 CreateEvent(NULL,kEventClassWindow,kEventWindowClose,0,kEventAttributeNone,
 &eventRef);
 eventTargetRef = GetWindowEventTarget(FrontWindow());
 SendEventToEventTarget(eventRef,eventTargetRef);
 }
 }

 return osError;
}

// ** doOpenFile

OSErr doOpenFile(FSSpec fileSpec,OSType documentType)
{
 WindowRef windowRef;
 OSErr osError = noErr;
 SInt16 fileRefNum;
 docStructureHandle docStrucHdl;

 // ……… create new window

 if(osError = doNewDocWindow(false,documentType,&windowRef))
 return osError;

 SetWTitle(windowRef,fileSpec.name);

 // ……… open file's data fork

 if(osError = FSpOpenDF(&fileSpec,fsRdWrPerm,&fileRefNum))
 {
 DisposeWindow(windowRef);
 gCurrentNumberOfWindows --;
 return osError;
 }

 // ………………………………………………… store file reference number and FSSpec in window's document structure

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 (*docStrucHdl)->fileRefNum = fileRefNum;
 (*docStrucHdl)->fileFSSpec = fileSpec;

 // …… read in the file

 if(documentType == kFileTypeTEXT)
 {
 if(osError = doReadTextFile(windowRef))
 return osError;
 }
 else if(documentType == kFileTypePICT)
 {
 if(osError = doReadPictFile(windowRef))
 return osError;
 }

 // ……… set up window's proxy icon, and show window

 SetWindowProxyFSSpec(windowRef,&fileSpec); /////
 GetWindowProxyAlias(windowRef,&((*docStrucHdl)->aliasHdl)); /////
 SetWindowModified(windowRef,false); /////

 ShowWindow(windowRef);

 return noErr;
}

// ** doCreateAskSaveChangesDialog

OSErr doCreateAskSaveChangesDialog(WindowRef windowRef,docStructureHandle docStrucHdl,
 NavAskSaveChangesAction action)

Files and Navigation Services Version 1.0 18-51

{
 OSErr osError = noErr;
 NavDialogCreationOptions dialogOptions;
 Str255 windowTitle, applicationName;

 // ……… create window-modal Save Changes Changes dialog

 osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
 if(osError == noErr)
 {
 GetWTitle(windowRef,windowTitle);
 dialogOptions.saveFileName = CFStringCreateWithPascalString(NULL,windowTitle,
 CFStringGetSystemEncoding());

 GetIndString(applicationName,rMiscStrings,sApplicationName);
 dialogOptions.clientName = CFStringCreateWithPascalString(NULL,applicationName,
 CFStringGetSystemEncoding());
 dialogOptions.parentWindow = windowRef;
 dialogOptions.modality = kWindowModalityWindowModal;

 if((*docStrucHdl)->askSaveDiscardEventFunctionUPP != NULL)
 {
 DisposeNavEventUPP((*docStrucHdl)->askSaveDiscardEventFunctionUPP);
 (*docStrucHdl)->askSaveDiscardEventFunctionUPP = NULL;
 }
 (*docStrucHdl)->askSaveDiscardEventFunctionUPP =
 NewNavEventUPP((NavEventProcPtr) askSaveDiscardEventFunction);

 HLock((Handle) docStrucHdl);

 osError = NavCreateAskSaveChangesDialog(&dialogOptions,action,
 (*docStrucHdl)->askSaveDiscardEventFunctionUPP,
 windowRef,
 &(*docStrucHdl)->modalToWindowNavDialogRef);
 HUnlock((Handle) docStrucHdl);

 if(osError == noErr && (*docStrucHdl)->modalToWindowNavDialogRef != NULL)
 {
 (*docStrucHdl)->isAskSaveChangesDialog = true;

 osError = NavDialogRun((*docStrucHdl)->modalToWindowNavDialogRef);
 if(osError != noErr)
 {
 NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
 (*docStrucHdl)->modalToWindowNavDialogRef = NULL;
 (*docStrucHdl)->isAskSaveChangesDialog = false;
 }

 if(!gRunningOnX)
 {
 if(gCloseDocWindow)
 {
 osError = doCloseDocWindow(windowRef);
 if(osError != noErr)
 doErrorAlert(osError);
 gCloseDocWindow = false;
 }
 }
 }

 if(dialogOptions.saveFileName != NULL)
 CFRelease(dialogOptions.saveFileName);
 if(dialogOptions.clientName != NULL)
 CFRelease(dialogOptions.clientName);
 }

 return osError;
}

18-52 Version 1.0 Files and Navigation Services

// *** doSaveUsingFSSpec

OSErr doSaveUsingFSSpec(WindowRef windowRef,NavReplyRecord *navReplyStruc)
{
 OSErr osError = noErr;
 AEKeyword theKeyword;
 DescType actualType;
 FSSpec fileSpec;
 Size actualSize;
 docStructureHandle docStrucHdl;
 OSType fileType;
 CFStringRef fileName;
 SInt16 fileRefNum;
 Rect portRect;

 if((*navReplyStruc).validRecord)
 {
 // …… get FSSpec

 if((osError = AEGetNthPtr(&(*navReplyStruc).selection,1,typeFSS,&theKeyword,
 &actualType,&fileSpec,sizeof(fileSpec),&actualSize)) == noErr)
 {
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 // ………………………………… get file name, convert to Pascal string, assign to name field of FSSpec

 fileName = NavDialogGetSaveFileName((*docStrucHdl)->modalToWindowNavDialogRef);
 if(fileName != NULL)
 osError = CFStringGetPascalString(fileName,&fileSpec.name[0],sizeof(FSSpec),
 CFStringGetSystemEncoding());

 // ……… if not replacing, first create a new file

 if(!((*navReplyStruc).replacing))
 {
 if((*docStrucHdl)->editStrucHdl != NULL)
 fileType = kFileTypeTEXT;
 else if((*docStrucHdl)->pictureHdl != NULL)
 fileType = kFileTypePICT;

 osError = FSpCreate(&fileSpec,kFileCreator,fileType,(*navReplyStruc).keyScript);
 if(osError != noErr)
 {
 NavDisposeReply(&(*navReplyStruc));
 return osError;
 }
 }

 // …………………………………………………… assign FSSpec to fileFSSpec field of window's document structure

 (*docStrucHdl)->fileFSSpec = fileSpec;

 // ………………………………………………………………………………………………… if file currently exists for document, close it

 if((*docStrucHdl)->fileRefNum != 0)
 {
 osError = FSClose((*docStrucHdl)->fileRefNum);
 (*docStrucHdl)->fileRefNum = 0;
 }

 // …… open file's data fork and write file

 if(osError == noErr)
 osError = FSpOpenDF(&(*docStrucHdl)->fileFSSpec,fsRdWrPerm,&fileRefNum);

 if(osError == noErr)
 {
 (*docStrucHdl)->fileRefNum = fileRefNum;
 SetWTitle(windowRef,fileSpec.name);

Files and Navigation Services Version 1.0 18-53

 // … proxy icon and file synchronisation stuff

 SetPortWindowPort(windowRef); /////
 SetWindowProxyFSSpec(windowRef,&fileSpec); /////
 GetWindowProxyAlias(windowRef,&((*docStrucHdl)->aliasHdl)); /////
 SetWindowModified(windowRef,false); /////

 // … write file using safe save

 osError = doWriteFile(windowRef);

 NavCompleteSave(&(*navReplyStruc),kNavTranslateInPlace);
 }
 }
 }

 SetPortWindowPort(windowRef);
 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 InvalWindowRect(windowRef,&portRect);

 return osError;
}

// ** doSaveUsingFSRef

OSErr doSaveUsingFSRef(WindowRef windowRef,NavReplyRecord *navReplyStruc)
{
 OSErr osError = noErr;
 AEDesc aeDesc;
 Size dataSize;
 FSRef fsRefParent, fsRefDelete;
 UniCharCount nameLength;
 UniChar *nameBuffer;
 FSSpec fileSpec;
 docStructureHandle docStrucHdl;
 FInfo fileInfo;
 SInt16 fileRefNum;
 Rect portRect;

 osError = AECoerceDesc(&(*navReplyStruc).selection,typeFSRef,&aeDesc);
 if(osError == noErr)
 {
 // ……… get FSRef

 dataSize = AEGetDescDataSize(&aeDesc);
 if(dataSize > 0)
 osError = AEGetDescData(&aeDesc,&fsRefParent,sizeof(FSRef));
 if(osError == noErr)
 {
 // …………………………………………………………………………… get file name from saveFileName field of NavReplyRecord

 nameLength = (UniCharCount) CFStringGetLength((*navReplyStruc).saveFileName);
 nameBuffer = (UniChar *) NewPtr(nameLength);
 CFStringGetCharacters((*navReplyStruc).saveFileName,CFRangeMake(0,nameLength),
 &nameBuffer[0]);
 if(nameBuffer != NULL)
 {
 // …………………………………………………………………………………………………… if replacing, delete the file being replaced

 if((*navReplyStruc).replacing)
 {
 osError = FSMakeFSRefUnicode(&fsRefParent,nameLength,nameBuffer,
 kTextEncodingUnicodeDefault,&fsRefDelete);
 {
 if(osError == noErr)
 osError = FSDeleteObject(&fsRefDelete);
 if(osError == fBsyErr)

18-54 Version 1.0 Files and Navigation Services

 {
 DisposePtr((Ptr) nameBuffer);
 return osError;
 }
 }
 }

 // …………………………………… create file with Unicode name (but it can be written with an FSSpec)

 if(osError == noErr)
 {
 osError = FSCreateFileUnicode(&fsRefParent,nameLength,nameBuffer,kFSCatInfoNone,
 NULL,NULL,&fileSpec);
 if(osError == noErr)
 {
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 osError = FSpGetFInfo(&fileSpec,&fileInfo);

 if((*docStrucHdl)->editStrucHdl != NULL)
 fileInfo.fdType = kFileTypeTEXT;
 else if((*docStrucHdl)->pictureHdl != NULL)
 fileInfo.fdType = kFileTypePICT;
 fileInfo.fdCreator = kFileCreator;

 if(osError == noErr)
 osError = FSpSetFInfo(&fileSpec,&fileInfo);

 (*docStrucHdl)->fileFSSpec = fileSpec;

 // …… open file's data fork and write file

 if(osError == noErr)
 osError = FSpOpenDF(&fileSpec,fsRdWrPerm,&fileRefNum);

 if(osError == noErr)
 {
 (*docStrucHdl)->fileRefNum = fileRefNum;
 SetWTitle(windowRef,fileSpec.name);

 // … … … … … … … … … … … … … … … … … … proxy icon and file synchronisation stuff

 SetPortWindowPort(windowRef); /////
 SetWindowProxyFSSpec(windowRef,&fileSpec); /////
 GetWindowProxyAlias(windowRef,&((*docStrucHdl)->aliasHdl)); /////
 SetWindowModified(windowRef,false); /////

 // … write file using safe save

 osError = doWriteFile(windowRef);

 NavCompleteSave(&(*navReplyStruc),kNavTranslateInPlace);
 }
 }
 }
 }

 DisposePtr((Ptr) nameBuffer);
 }

 AEDisposeDesc(&aeDesc);
 }

 SetPortWindowPort(windowRef);
 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 InvalWindowRect(windowRef,&portRect);

 return osError;

Files and Navigation Services Version 1.0 18-55

}

// *** doWriteFile

OSErr doWriteFile(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 FSSpec fileSpecActual, fileSpecTemp;
 UInt32 currentTime;
 Str255 tempFileName;
 SInt16 tempFileVolNum, tempFileRefNum;
 SInt32 tempFileDirID;
 OSErr osError = noErr;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 fileSpecActual = (*docStrucHdl)->fileFSSpec;

 GetDateTime(¤tTime);
 NumToString((SInt32) currentTime,tempFileName);

 osError = FindFolder(fileSpecActual.vRefNum,kTemporaryFolderType,kCreateFolder,
 &tempFileVolNum,&tempFileDirID);
 if(osError == noErr)
 osError = FSMakeFSSpec(tempFileVolNum,tempFileDirID,tempFileName,&fileSpecTemp);
 if(osError == noErr || osError == fnfErr)
 osError = FSpCreate(&fileSpecTemp,'trsh','trsh',smSystemScript);
 if(osError == noErr)
 osError = FSpOpenDF(&fileSpecTemp,fsRdWrPerm,&tempFileRefNum);
 if(osError == noErr)
 {
 if((*docStrucHdl)->editStrucHdl)
 osError = doWriteTextData(windowRef,tempFileRefNum);
 else if((*docStrucHdl)->pictureHdl)
 osError = doWritePictData(windowRef,tempFileRefNum);
 }
 if(osError == noErr)
 osError = FSClose(tempFileRefNum);
 if(osError == noErr)
 osError = FSClose((*docStrucHdl)->fileRefNum);
 if(osError == noErr)
 osError = FSpExchangeFiles(&fileSpecTemp,&fileSpecActual);
 if(osError == noErr)
 osError = FSpDelete(&fileSpecTemp);
 if(osError == noErr)
 osError = FSpOpenDF(&fileSpecActual,fsRdWrPerm,&(*docStrucHdl)->fileRefNum);

 if(osError == noErr)
 osError = doCopyResources(windowRef);

 return osError;
}

// ** doReadTextFile

OSErr doReadTextFile(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 SInt16 fileRefNum;
 TEHandle textEditHdl;
 SInt32 numberOfBytes;
 Handle textBuffer;
 OSErr osError = noErr;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 fileRefNum = (*docStrucHdl)->fileRefNum;

 textEditHdl = (*docStrucHdl)->editStrucHdl;
 (*textEditHdl)->txSize = 10;
 (*textEditHdl)->lineHeight = 15;

18-56 Version 1.0 Files and Navigation Services

 SetFPos(fileRefNum,fsFromStart,0);
 GetEOF(fileRefNum,&numberOfBytes);

 if(numberOfBytes > 32767)
 numberOfBytes = 32767;

 if(!(textBuffer = NewHandle((Size) numberOfBytes)))
 return MemError();

 osError = FSRead(fileRefNum,&numberOfBytes,*textBuffer);
 if(osError == noErr || osError == eofErr)
 {
 HLockHi(textBuffer);
 TESetText(*textBuffer,numberOfBytes,(*docStrucHdl)->editStrucHdl);
 HUnlock(textBuffer);
 DisposeHandle(textBuffer);
 }
 else
 return osError;

 return noErr;
}

// ** doReadPictFile

OSErr doReadPictFile(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 SInt16 fileRefNum;
 SInt32 numberOfBytes;
 OSErr osError = noErr;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 fileRefNum = (*docStrucHdl)->fileRefNum;

 GetEOF(fileRefNum,&numberOfBytes);
 SetFPos(fileRefNum,fsFromStart,512);
 numberOfBytes -= 512;

 if(!((*docStrucHdl)->pictureHdl = (PicHandle) NewHandle(numberOfBytes)))
 return MemError();

 osError = FSRead(fileRefNum,&numberOfBytes,*(*docStrucHdl)->pictureHdl);
 if(osError == noErr || osError == eofErr)
 return(noErr);
 else
 return osError;
}

// *** doWriteTextData

OSErr doWriteTextData(WindowRef windowRef,SInt16 tempFileRefNum)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditHdl;
 Handle editText;
 SInt32 numberOfBytes;
 SInt16 volRefNum;
 OSErr osError = noErr;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditHdl = (*docStrucHdl)->editStrucHdl;
 editText = (*textEditHdl)->hText;
 numberOfBytes = (*textEditHdl)->teLength;

 osError = SetFPos(tempFileRefNum,fsFromStart,0);
 if(osError == noErr)
 osError = FSWrite(tempFileRefNum,&numberOfBytes,*editText);

Files and Navigation Services Version 1.0 18-57

 if(osError == noErr)
 osError = SetEOF(tempFileRefNum,numberOfBytes);
 if(osError == noErr)
 osError = GetVRefNum(tempFileRefNum,&volRefNum);
 if(osError == noErr)
 osError = FlushVol(NULL,volRefNum);

 if(osError == noErr)
 (*docStrucHdl)->windowTouched = false;

 return osError;
}

// *** doWritePictData

OSErr doWritePictData(WindowRef windowRef,SInt16 tempFileRefNum)
{
 docStructureHandle docStrucHdl;
 PicHandle pictureHdl;
 SInt32 numberOfBytes, dummyData;
 SInt16 volRefNum;
 OSErr osError = noErr;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 pictureHdl = (*docStrucHdl)->pictureHdl;

 numberOfBytes = 512;
 dummyData = 0;

 osError = SetFPos(tempFileRefNum,fsFromStart,0);

 if(osError == noErr)
 osError = FSWrite(tempFileRefNum,&numberOfBytes,&dummyData);

 numberOfBytes = GetHandleSize((Handle) (*docStrucHdl)->pictureHdl);

 if(osError == noErr)
 {
 HLock((Handle) (*docStrucHdl)->pictureHdl);
 osError = FSWrite(tempFileRefNum,&numberOfBytes,*(*docStrucHdl)->pictureHdl);
 HUnlock((Handle) (*docStrucHdl)->pictureHdl);
 }

 if(osError == noErr)
 osError = SetEOF(tempFileRefNum,512 + numberOfBytes);
 if(osError == noErr)
 osError = GetVRefNum(tempFileRefNum,&volRefNum);
 if(osError == noErr)
 osError = FlushVol(NULL,volRefNum);

 if(osError == noErr)
 (*docStrucHdl)->windowTouched = false;

 return osError;
}

// *** getFilePutFileEventFunction

void getFilePutFileEventFunction(NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,NavCallBackUserData callBackUD)
{
 OSErr osError = noErr;
 NavReplyRecord navReplyStruc;
 NavUserAction navUserAction;
 SInt32 count, index;
 AEKeyword theKeyword;
 DescType actualType;
 FSSpec fileSpec;
 Size actualSize;

18-58 Version 1.0 Files and Navigation Services

 FInfo fileInfo;
 OSType documentType;
 WindowRef windowRef;
 AEDesc aeDesc;
 AEKeyword keyWord;
 DescType typeCode;
 Rect theRect;
 Str255 theString, numberString;
 docStructureHandle docStrucHdl;

 switch(callBackSelector)
 {
 case kNavCBUserAction:
 osError = NavDialogGetReply(callBackParms->context,&navReplyStruc);
 if(osError == noErr && navReplyStruc.validRecord)
 {
 navUserAction = NavDialogGetUserAction(callBackParms->context);

 switch(navUserAction)
 {
 // ……… click on Open button in Open dialog

 case kNavUserActionOpen:
 if(gModalToApplicationNavDialogRef != NULL)
 {
 osError = AECountItems(&(navReplyStruc.selection),&count);
 if(osError == noErr)
 {
 for(index=1;index<=count;index++)
 {
 osError = AEGetNthPtr(&(navReplyStruc.selection),index,typeFSS,
 &theKeyword,&actualType,&fileSpec,sizeof(fileSpec),
 &actualSize);
 if((osError = FSpGetFInfo(&fileSpec,&fileInfo)) == noErr)
 {
 documentType = fileInfo.fdType;
 osError = doOpenFile(fileSpec,documentType);
 if(osError != noErr)
 doErrorAlert(osError);
 }
 }
 }
 }
 break;

 // ……………………………………………………………………………………………… click on Save button in Save Location dialog

 case kNavUserActionSaveAs:
 windowRef = callBackUD;
 osError = AECoerceDesc(&navReplyStruc.selection,typeFSRef,&aeDesc);
 if(osError == noErr)
 {
 osError = doSaveUsingFSRef(windowRef,&navReplyStruc);
 if(osError != noErr)
 doErrorAlert(osError);
 AEDisposeDesc(&aeDesc);
 }
 else
 {
 osError = doSaveUsingFSSpec(windowRef,&navReplyStruc);
 if(osError != noErr)
 doErrorAlert(osError);
 }
 break;

 // …………………………………………………………………………………… click on Choose button in Choose a Folder dialog

 case kNavUserActionChoose:
 if((osError = AEGetNthPtr(&(navReplyStruc.selection),1,typeFSS,&keyWord,&typeCode,

Files and Navigation Services Version 1.0 18-59

 &fileSpec,sizeof(FSSpec),&actualSize)) == noErr)
 {
 FSMakeFSSpec(fileSpec.vRefNum,fileSpec.parID,fileSpec.name,&fileSpec);
 }
 windowRef = callBackUD;
 SetPortWindowPort(windowRef);
 TextSize(10);
 SetRect(&theRect,0,271,600,300);
 EraseRect(&theRect);
 doCopyPString(fileSpec.name,theString);
 doConcatPStrings(theString, "\p Volume Reference Number: ");
 NumToString((SInt32) fileSpec.vRefNum,numberString);
 doConcatPStrings(theString,numberString);
 doConcatPStrings(theString, "\p Parent Directory ID: ");
 NumToString((SInt32) fileSpec.parID,numberString);
 doConcatPStrings(theString,numberString);
 MoveTo(10,290);
 DrawString(theString);
 break;
 }

 osError = NavDisposeReply(&navReplyStruc);
 }
 break;

 case kNavCBTerminate:
 if(gModalToApplicationNavDialogRef != NULL)
 {
 NavDialogDispose(gModalToApplicationNavDialogRef);
 gModalToApplicationNavDialogRef = NULL;
 }
 else
 {
 windowRef = callBackUD;
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 if((*docStrucHdl)->modalToWindowNavDialogRef != NULL)
 {
 NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
 (*docStrucHdl)->modalToWindowNavDialogRef = NULL;
 }
 }
 break;
 }
}

// *** askSaveDiscardEventFunction

void askSaveDiscardEventFunction(NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,NavCallBackUserData callBackUD)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 NavUserAction navUserAction;
 OSErr osError = noErr;
 Rect portRect;

 switch(callBackSelector)
 {
 case kNavCBUserAction:
 windowRef = callBackUD;
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 if((*docStrucHdl)->modalToWindowNavDialogRef != NULL)
 {
 navUserAction = NavDialogGetUserAction(callBackParms->context);
 switch(navUserAction)
 {
 // …………………………………………………………………………………………………… click on Save button in Save Changes alert

18-60 Version 1.0 Files and Navigation Services

 case kNavUserActionSaveChanges:
 osError = doSaveCommand();
 if(osError != noErr)
 doErrorAlert(osError);

 // …………………………………………………………………………………… click on Don't Save button in Save Changes alert

 case kNavUserActionDontSaveChanges:
 NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
 if(gRunningOnX)
 {
 osError = doCloseDocWindow(windowRef);
 if(osError != noErr)
 doErrorAlert(osError);
 }
 else
 gCloseDocWindow = true;
 break;

 // ………………………………………………………………………………………………… click on OK button in Discard Changes alert

 case kNavUserActionDiscardChanges:
 GetWindowPortBounds(windowRef,&portRect);
 SetPortWindowPort(windowRef);
 EraseRect(&portRect);

 if((*docStrucHdl)->editStrucHdl != NULL && (*docStrucHdl)->fileRefNum != 0)
 {
 osError = doReadTextFile(windowRef);
 if(osError != noErr)
 doErrorAlert(osError);
 }
 else if((*docStrucHdl)->pictureHdl != NULL)
 {
 KillPicture((*docStrucHdl)->pictureHdl);
 (*docStrucHdl)->pictureHdl = NULL;

 osError = doReadPictFile(windowRef);
 if(osError != noErr)
 doErrorAlert(osError);
 }

 (*docStrucHdl)->windowTouched = false;
 SetWindowModified(windowRef,false); /////
 InvalWindowRect(windowRef,&portRect);

 NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
 (*docStrucHdl)->modalToWindowNavDialogRef = NULL;
 break;

 // …………………………………………… click on Cancel button in Save Changes or Discard Changes alert

 case kNavUserActionCancel:
 if((*docStrucHdl)->isAskSaveChangesDialog == true)
 {
 gQuittingApplication = false;
 (*docStrucHdl)->isAskSaveChangesDialog = false;
 }
 NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
 (*docStrucHdl)->modalToWindowNavDialogRef = NULL;
 break;
 }
 }
 break;
 }
}

// *** doCopyResources

Files and Navigation Services Version 1.0 18-61

OSErr doCopyResources(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 OSType fileType;
 OSErr osError = noErr;
 SInt16 fileRefNum;
 Handle editTextHdl, textResourceHdl;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 if((*docStrucHdl)->editStrucHdl)
 fileType = kFileTypeTEXT;
 else if((*docStrucHdl)->pictureHdl)
 fileType = kFileTypePICT;

 FSpCreateResFile(&(*docStrucHdl)->fileFSSpec,kFileCreator,fileType,smSystemScript);

 osError = ResError();
 if(osError == noErr)
 fileRefNum = FSpOpenResFile(&(*docStrucHdl)->fileFSSpec,fsRdWrPerm);

 if(fileRefNum > 0)
 {
 osError = doCopyAResource('STR ',-16396,gAppResFileRefNum,fileRefNum);

 if(fileType == kFileTypePICT)
 {
 doCopyAResource('pnot',128,gAppResFileRefNum,fileRefNum);
 doCopyAResource('PICT',128,gAppResFileRefNum,fileRefNum);
 }

 if(!gRunningOnX && fileType == kFileTypeTEXT)
 {
 doCopyAResource('pnot',129,gAppResFileRefNum,fileRefNum);

 editTextHdl = (*(*docStrucHdl)->editStrucHdl)->hText;
 textResourceHdl = NewHandleClear(1024);
 BlockMoveData(*editTextHdl,*textResourceHdl,1024);
 UseResFile(fileRefNum);
 AddResource(textResourceHdl,'TEXT',129,"\p");
 if(ResError() == noErr)
 UpdateResFile(fileRefNum);
 ReleaseResource(textResourceHdl);
 }
 }
 else
 osError = ResError();

 if(osError == noErr)
 CloseResFile(fileRefNum);

 osError = ResError();
 return osError;
}

// *** doCopyAResource

OSErr doCopyAResource(ResType resourceType,SInt16 resourceID,SInt16 sourceFileRefNum,
 SInt16 destFileRefNum)
{
 Handle sourceResourceHdl;
 Str255 sourceResourceName;
 ResType ignoredType;
 SInt16 ignoredID;

 UseResFile(sourceFileRefNum);

 sourceResourceHdl = GetResource(resourceType,resourceID);

18-62 Version 1.0 Files and Navigation Services

 if(sourceResourceHdl != NULL)
 {
 GetResInfo(sourceResourceHdl,&ignoredID,&ignoredType,sourceResourceName);
 DetachResource(sourceResourceHdl);
 UseResFile(destFileRefNum);
 AddResource(sourceResourceHdl,resourceType,resourceID,sourceResourceName);
 if(ResError() == noErr)
 UpdateResFile(destFileRefNum);
 }

 ReleaseResource(sourceResourceHdl);

 return ResError();
}

// ***
// SynchroniseFiles.c
// ***

// …… includes

#include "Files.h"

// …… global variables

extern SInt16 gCurrentNumberOfWindows;

// ** doSynchroniseFiles

void doSynchroniseFiles(void)
{
 WindowRef windowRef;
 SInt16 trashVRefNum;
 SInt32 trashDirID;
 docStructureHandle docStrucHdl;
 Boolean aliasChanged;
 AliasHandle aliasHdl;
 FSSpec newFSSpec;
 OSErr osError;

 windowRef = FrontNonFloatingWindow();

 while(windowRef != NULL)
 {
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 if(docStrucHdl != NULL)
 {
 if((*docStrucHdl)->aliasHdl == NULL)
 break;

 aliasChanged = false;
 aliasHdl = (*docStrucHdl)->aliasHdl;
 ResolveAlias(NULL,aliasHdl,&newFSSpec,&aliasChanged);

 if(aliasChanged)
 {
 (*docStrucHdl)->fileFSSpec = newFSSpec;
 SetWTitle(windowRef,newFSSpec.name);
 }

 osError = FindFolder(kUserDomain,kTrashFolderType,kDontCreateFolder,&trashVRefNum,
 &trashDirID);

 if(osError == noErr)
 {
 do
 {
 if(newFSSpec.parID == fsRtParID)

Files and Navigation Services Version 1.0 18-63

 break;

 if((newFSSpec.vRefNum == trashVRefNum) && (newFSSpec.parID == trashDirID))
 {
 FSClose((*docStrucHdl)->fileRefNum);
 if((*docStrucHdl)->editStrucHdl)
 TEDispose((*docStrucHdl)->editStrucHdl);
 if((*docStrucHdl)->pictureHdl)
 KillPicture((*docStrucHdl)->pictureHdl);
 DisposeHandle((Handle) docStrucHdl);
 DisposeWindow(windowRef);
 gCurrentNumberOfWindows --;
 break;
 }
 } while(FSMakeFSSpec(newFSSpec.vRefNum,newFSSpec.parID,"\p",&newFSSpec) == noErr);
 }
 }

 windowRef = GetNextWindow(windowRef);
 }
}

// ***
// ChooseAFolderDialog.c
// ***

// …… includes

#include "Files.h"

// …… global variables

extern NavEventUPP gGetFilePutFileEventFunctionUPP ;
extern NavDialogRef gModalToApplicationNavDialogRef;

// *** doChooseAFolderDialog

OSErr doChooseAFolderDialog(void)
{
 OSErr osError = noErr;
 NavDialogCreationOptions dialogOptions;
 WindowRef windowRef, parentWindowRef;
 Str255 message;

 osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
 if(osError == noErr)
 {
 if((osError = GetSheetWindowParent(FrontWindow(),&parentWindowRef)) == noErr)
 windowRef = parentWindowRef;
 else
 windowRef = FrontWindow();

 GetIndString(message,rMiscStrings,sChooseAFolder);
 dialogOptions.message = CFStringCreateWithPascalString(NULL,message,
 CFStringGetSystemEncoding());
 dialogOptions.modality = kWindowModalityAppModal;

 osError = NavCreateChooseFolderDialog(&dialogOptions,gGetFilePutFileEventFunctionUPP ,
 NULL,windowRef,&gModalToApplicationNavDialogRef);

 if(osError == noErr && gModalToApplicationNavDialogRef != NULL)
 {
 osError = NavDialogRun(gModalToApplicationNavDialogRef);
 if(osError != noErr)
 {
 NavDialogDispose(gModalToApplicationNavDialogRef);
 gModalToApplicationNavDialogRef = NULL;
 }
 }

18-64 Version 1.0 Files and Navigation Services

 }

 return osError;
}

// ***

Files and Navigation Services Version 1.0 18-65

Demonstration Program Files Comments
When the program is run, the user should:

• Exercise the File menu by opening the supplied TEXT and PICT files, saving those files, saving those
files under new names, closing files, opening the new files, attempting to open files that are already
open, attempting to save files to new files with existing names, making open windows "touched" by
choosing the first item in the Demonstration menu, reverting to the saved versions of files associated
with "touched" windows, choosing Quit when one "touched" window is open, choosing Quit when two or more
"touched" windows are open, and so on.

• Choose, via the Show pop-up menu button, the file types required to be displayed in the Open dialog.

• Choose the Choose a Folder item from the Demonstration menu to display the Choose a Folder dialog, and
choose a folder using the Choose button at the bottom of the dialog. (The name of the chosen folder
will be drawn in the bottom-left corner of the front window.)

• With either the PICT Document or the TEXT Document open:

• With the document's Finder icon visible, drag the window proxy icon to the desktop or to another
open folder, noting that the Finder icon moves to the latter. Then choose Touch Window from the
Demonstration menu to simulate unsaved changes to the document. Note that the proxy icon changes to
the disabled state. Then save the file, proving the correct operation of the file synchronisation
function. Note that, after the save, the window proxy icon changes back to the enabled state.

• Command-click the window's title to display the window path pop-up menu, choose a folder from the
menu, and note that the Finder is brought to the foreground and the chosen folder opens.

The program may be run from within CodeWarrior to demonstrate responses to the File menu commands and the
Choose a Folder dialog.

The built application, together with the supplied 'TEXT' and 'PICT' files, may be used to demonstrate the
additional aspect of integrating the receipt of required Apple events with the overall file handling
mechanism. To prove the correct handling of the required Apple events, the user should:

• Open the application by double-clicking the application icon, noting that a new document window is
opened after the application is launched and the Open Application event is received.

• Double click on a document icon, or select one or more document icons and either drag those icons to
the application icon or choose Open from the Finder's File menu, noting that the application is
launched and the selected files are opened when the Open Documents event is received.

• Close all windows and double-click the application icon, noting that the application responds to the
Re-open Application event by opening a new window.

• With the PICT Document and the TEXT Document open and "touched", and several other windows open, choose
Restart or Shut Down from the Mac OS 8/9 Finder's Special menu or the Mac OS X Apple menu (thus
invoking a Quit Application event), noting that, for "touched" windows, the Save Changes alert is
presented asking the user whether the file should be saved before the shutdown process proceeds. (On
Mac OS X, a Review Unsaved alert will be presented at first.)

Note, however, that no printing functions are included. Thus, selecting one or more document icons and
choosing Print from the Finder's File menu (Mac OS 8/9) will result in the file/s opening but not
printing.

Files.h

defines
Constants are established for a 'STR#' resource containing error strings for three specific error
conditions, a 'STR#' resource containing the application's name and the message string for the Choose a
Folder dialog, and the 'open' resource containing the file types list.

KFileCreator represents the application's signature and the next two constants represent the file types
that are readable and writeable by the application.

18-66 Version 1.0 Files and Navigation Services

typedefs
Each window created by the program will have an associated document structure. The docStructure data type
will be used for document structures.

The editStrucHdl field will be assigned a handle to a TextEdit structure ('TEXT' files). The pictureHdl
field will be assigned a handle to a Picture structure ('PICT' files). The fileRefNum and fileFSSpec
fields will be assigned the file reference number and the file system specification structure of the file
associated with the window. When a file is opened, the aliasHdl field will be assigned a handle to a
structure of type AliasRecord, which contains the alias data for the file. The windowTouched field will
be set to true when a window has been made "touched".

When modal-to-the-window Navigation Services dialogs (Save Location, Save Changes, and Discard Changes
alerts) are created, the dialog reference will be assigned to the modalToWindowNavDialogRef field. When
Save Changes and Discard Changes alerts are created, a universal procedure pointer to the associated event
(callback) function will be assigned to the askSaveDiscardChangesDialog field. When a Save Changes alert
is created, the isAskSaveChangesDialog field will be set to true to enable the associated event (callback)
function to re-set a "quitting application" flag if the user clicks the Cancel button in a Save Changes
alert (but not if the user clicks the Cancel button in a Discard Changes alert).

Files.c

Global Variables
gAppResFileRefNum will be assigned the file reference number of the application's resource fork.
gGetFilePutFileEventFunctionUPP will be assigned a universal procedure pointer to the event (callback)
function associated with the Open, Save Location, and Choose a Folder dialogs. gQuittingApplication is set
to true in certain circumstances within quitAppEventHandler and to false if the Cancel button is clicked
in a Save Changes or Review Unsaved alert.

main
The file reference number of the application's resource fork (which is opened automatically at application
launch) is assigned to the global variable gAppResFileRefNum.

After the required Apple event handlers are installed, the program's application event handler and an
timer are installed. The timer is set to fire at an interval of 15 ticks, and will be used to trigger
calls to the function doIdle, which calls the program's file synchronisation function.

A universal procedure pointer to the event (callback) function associated with the Open, Save Location,
and Choose a Folder dialogs is created and assigned to the global variable
gGetFilePutFileEventFunctionUPP.

doInstallAEHandlers
doInstallAEHandlers installs handlers for the Open Application, Re-Open Application, Open Document, Print
Documents, and Quit Application events. Since the program installs its own Quit Application event
handler, the default Quit Application event handler will not be installed when RunApplicationEventLoop is
called.

windowEventHandler
windowEventHandler is the program's window event handler (a callback function), which is installed on all
document windows.

Note that, when the event type kEventWindowClose is received, the constant passed in the call to
doCloseCommand depends on whether the global variable gQuittingApplication is set to true or false.
Amongst other things, this constant affects the text in the Save Changes alert.

Note also that no code is required in a Carbon application to handle window path pop-up menus. The
standard window handler handles all user interaction with window path pop-up menus, including bringing the
Finder to the front when the user chooses a folder.

doIdle
doIdle is called when the installed timer fires. If the front window is a document window,
doSynchroniseFiles is called to synchronises the application with the actual current location (and name)
of its currently open document files.

doDrawContent
doDrawContent is called when the kEventWindowDrawContent event type is received. It performs such window
updating as is necessary for the satisfactory execution of the demonstration aspects of the program.

Files and Navigation Services Version 1.0 18-67

doMenuChoice
At the File_Close case, kNavSaveChangesClosingDocument is passed in the call to doCloseCommand. This
affects the wording in the Save Changes alert.

doAdjustMenus
If the program is running on Mac OS X, GetSheetWindowParent is called as a way of determining whether the
frontmost window is a sheet. If it is, the File and Demonstration menus are adjusted accordingly.

doTouchWindow
doTouchWindow is called when the user chooses the Touch Window item in the Demonstration menu. Changing
the content of the in-memory version of a file is only simulated in this program. The text "WINDOW
TOUCHED" is drawn in window and the windowTouched field of the document structure is set to true.

SetWindowModified is called with true passed in the modified parameter. This causes the proxy icon to
appear in the disabled state, indicating that the window has unsaved changes.

openAppEventHandler, reopenAppEventHandler, and openAndPrintDocsEventHandler
The handlers for the first four required Apple events are essentially identical to those in the
demonstration program AppleEvents. One major difference is that one handler
(openAndPrintDocsEventHandler) is used for both the Open Documents and Print Documents events, with a
value passed in the handler's handlerRefcon parameter advising the handler which of the two events has
been received.

Most programs should simply open a new untitled window on receipt of an Open Application event.
Accordingly, openAppEventHandler simply calls the same function (doNewCommand) as is called when the user
chooses New from the File menu.

On receipt of a Re-Open Application event, if no windows are currently open, doNewCommand is called to
open a window.

The demonstration program supports both 'TEXT' and 'PICT' files. On receipt of an Open Application event,
it is thus necessary to determine the type of each file specified in the event. Accordingly, within
openAndPrintDocsEventHandler, the call to FSpGetFInfo returns the Finder information from the volume
catalog entry for the file relating to the specified FSSpec structure. The fdType field of the FInfo
structure "filled-in" by FSpGetFInfo contains the file type. This, together with the FSSpec structure, is
then passed in the call to doOpenFile. (doOpenFile is also called when the user chooses Open from the
File menu.)

quitAppEventHandler
Much of the code in quitAppEventHandler has to do with the requirement, on Mac OS X only, to present a
Review Unsaved alert if more than one window with unsaved changes is open when the event is received.

If no windows are open, QuitApplicationEventLoop is called to close the application down. If at least one
window is open, the following occurs.

GetFrontWindowOfClass is called to determine whether any window has a sheet. If so, that window is
brought to the front and activated and the handler returns immediately, keeping the application alive.

The do-while loop walks the window list counting the number of document windows with unsaved changes (that
is, "touched" windows) and, at the same time, bringing those windows to the front. At the next block, if
there are no touched document windows, QuitApplicationEventLoop is called to close the application down.

If the application is running on Mac OS X, the following occurs:

• If there is only one touched window open, the flag gQuittingApplication is set to true and a
kEventWindowClose event is created and sent to the front window. As will be see, this results in a
sequence involving doCloseCommand and doCloseDocWindow whereby all untouched windows in front of the
touched window are disposed of and a Save Changes alert is presented for the touched window. In this
sequence, if the event handler for the Save Changes alert detects a Cancel button click,
gQuittingApplication will be set to false, an action which will cause the process of closing down the
remaining windows and the application to be terminated. If the Save or Don't Save buttons are clicked,
all remaining windows will be closed down, and the program will be closed down by a call to
QuitApplicationEventLoop, within the function doCloseDocWindow.

• If more than one window has been touched, doReviewChangesAlert is called to create, display and handle
a Review Changes alert. If the Review Changes… button is hit, the flag gQuittingApplication is set to
true and a kEventWindowClose event is created and sent to the front window, resulting in the same

18-68 Version 1.0 Files and Navigation Services

general process of close-down, and possible termination of that close-down process, described above.
If the Cancel button is hit, the flag gQuittingApplication is set to false (which defeats the execution
of the last block of code in doCloseDocWindow) and quitAppEventHandler simply returns. If the Discard
Changes button is hit, QuitApplicationEventLoop is called to terminate the program.

If the application is running on Mac OS 8/9, a Review Unsaved alert is not invoked. Instead, a
kEventWindowClose event is created and sent to the front window. This results in the the same general
process of close-down, and possible termination of that close-down process, described above. If the
Cancel button is not clicked in all Save Changes alerts, all windows will be closed down, and
QuitApplicationEventLoop called, within the function doCloseDocWindow.

NewOpenCloseSave.c

Global Variables
gModalToApplicationNavDialogRef will be assigned the dialog reference for the Open File dialog, which is
made application-modal. gCurrentNumberOfWindows keeps a count of the number of windows opened. gDestRect
and gViewRect are used to set the destination and view rectangles for the TextEdit structures associated
with 'TEXT' files.

doNewCommand
doNewCommand is called when the user chooses New from the File menu and when an Open Application or Re-
Open Application event is received.

Since this demonstration does not support the actual entry of text or the drawing of graphics, the
document type passed to doNewDocWindow is immaterial. The document type 'TEXT' is passed in this instance
simply to keep doNewDocWindow happy.

If doNewDocWindow returns no error, SetWindowProxyCreatorAndType is called to set the proxy icon for the
window. (A new, untitled window, even though it has no associated file, needs a proxy icon to maintain
visual consistency with other windows which have associated files.) The proxy icon will display in the
disabled state, indicating, in this particular case, that the window has no associated file rather than
unsaved changes.

The creator code and file type passed in the second and third parameters of SetWindowProxyCreatorAndType
determine the icon to be displayed.)

doOpenCommand
doOpenCommand, which is called when the user chooses Open from the File menu, uses Navigation Services 3.0
functions to create and display a application-modal Open dialog.

NavGetDefaultDialogCreationOptions initialises the specified NavDialogCreationOptions structure with the
defaults.

GetIndString retrieves the application's name and assigns it to an Str255 variable. This is then
converted to a CFString and assigned to the clientName field of the NavDialogCreationOptions structure.
This will cause the application's name to appear in the dialog's title bar.

The next line assigns a value to the modality field of the NavDialogCreationOptions structure which will
cause the dialog to be application-modal.

An 'open' resource containing the file type list is then read in and the handle assigned a variable of
type NavTypeListHandle. (The 'open' resource specifies that 'TEXT' and 'PICT' file types are supported.)

The call to NavCreateGetFileDialog creates the dialog. Since the default options are being used, multiple
file selection is allowed. A universal procedure pointer to the event function
getFilePutFileEventFunction, which will respond to button clicks in the dialog, is passed in the third
parameter. No preview function or filter function is used, and no user data is passed in. The last
parameter (a global variable) receives the dialog reference.

The call to NavDialogRun displays the dialog.

doCloseCommand
doCloseCommand is called when the user chooses Close from the File menu or clicks in the window's go-away
box. It is also called successively for each open window when a Quit Application Apple event is received.

The first two lines get a reference to the front window and establish whether the front window is a
document window or a modeless dialog.

Files and Navigation Services Version 1.0 18-69

If the front window is a document window, the handle to the window's document structure is retrieved from
the window's window object, allowing a check of whether the window is touched (that is, has unsaved
changes). If it does, doCreateAskSaveChangesDialog is called to create and display a Save Changes alert
and the function returns, otherwise doCloseDocWindow is called. Prior to the call to
doCreateAskSaveChangesDialog, if the window is collapsed (Mac OS 8/9) or minimized in the dock (Mac OS X)
it is first uncollapsed or brought out of the Dock.

No modeless dialogs are used by this program. However, if the front window was a modeless dialog, the
appropriate action would be taken at the second case.

doSaveCommand
doSaveCommand is called when the user chooses Save from the File menu or clicks the Save button in a Save
Changes alert.

The first two lines get the WindowRef for the front window and retrieve the handle to that window's
document structure. If a file currently exists for the document in this window, the function doWriteFile
is called. The next four lines are incidental to the demonstration; they simply remove the words "WINDOW
TOUCHED" from the window.

SetWindowModified is called with false passed in the modified parameter. This causes the window proxy
icon to appear in the enabled state, indicating no unsaved changes.

doSaveAsCommand
doSaveAsCommand uses Navigation Services 3.0 functions to create and display a window-modal Save Location
dialog. It is called when the user chooses Save As… from the File menu. It is also called by
doSaveCommand if the user chooses Save when the front window contains a document for which no file
currently exists.

NavGetDefaultDialogCreationOptions initialises the specified NavDialogCreationOptions structure with the
defaults. The first line in the if block unsets the "allow saving of stationery files" bit (one of the
defaults). On Mac OS 8/9, this means that the dialog will not contain the Format: pop-up menu.

GetWTitle gets the front window's title into an Str255 variable. This is then converted to a CFString and
assigned to the saveFileName field of the NavDialogCreationOptions structure. This will be the default
name for the saved file and will appear in the Name (OS 8/9) and Save As (OS X) edit text fields in the
Save Location dialog.

The next two lines assign the application's name to the clientName field of the NavDialogCreationOptions
structure. This will then appear in the dialog's title bar.

The next two lines assign the window reference to the parentWindow field of the NavDialogCreationOptions
structure and assign a value to the modality field which will cause the dialog to be window-modal.

The next block gets the file type from the window's document structure into a local variable.

The call to NavCreatePutFileDialog creates the dialog. A universal procedure pointer to the event
function getFilePutFileEventFunction, which will respond to button clicks in the dialog, is passed in the
fourth parameter. The window reference is passed in the fifth (user data) parameter. This will be passed
to the event function. The dialog reference is assigned to a field of the window's document structure.

The call to NavDialogRun displays the dialog.

doRevertCommand
doRevertCommand, which is called when the user chooses Revert from the File menu, uses Navigation Services
3.0 functions to create and display a window-modal Discard Changes alert. The general approach is similar
to that used to create and display the Save Location dialog, the main difference being that a universal
procedure pointer to the event function askSaveDiscardEventFunction is stored in the
askSaveDiscardEventFunctionUPP field of the window's document structure.

doNewDocWindow
doNewDocWindow is called by doNewCommand and doOpenFile.

If the current number of open windows is the maximum allowable by this program, the function immediately
exits, returning an error code which will cause an advisory error alert to be displayed.

The call to CreateNewWindow creates a new window with the standard document window attributes and with the
standard window event handler installed. SetWTitle is called to set the window's title to "untitled".

18-70 Version 1.0 Files and Navigation Services

ChangeWindowAttributes is called to remove the zoom box/button and grow box from the window. The call to
InstallWindowEventHandler installs the program's window event handler on the window.

The call to NewHandle allocates memory for the window's document structure. If this call is not
successful, the window is disposed of and the function returns with the error code returned by MemError.
The call to SetWRefCon assigns the handle to the document structure to the window structure's refCon
field. The next block initialises fields of the document structure.

If the document type is 'TEXT', the if block executes, creating a TextEdit structure and assigning a
handle to that structure to the editStrucHdl field of the document structure. (Note that the processes
here are not explained in detail because TextEdit and TextEdit structures are not central to the
demonstration. For the purposes of the demonstration, it is sufficient to understand that the text data
retrieved from, and saved to, disk is stored in a TextEdit structure. (TextEdit is addressed in detail at
Chapter 21.))

If the Boolean value passed to doNewDocWindow was set to true, the call to ShowWindow makes the window
visible, otherwise the window is left invisible. The penultimate line increments the global variable
which keeps track of the number of open windows.

doCloseDocWindow
doCloseDocWindow is called from doCloseCommand when the subject window is not touched and from the Save
Changes alert event handler askSaveDiscardEventFunction when the user clicks the Save or Don't Save
buttons in a Save Changes alert.

The FSClose call closes the file, and FlushVol stores to disk all unwritten data currently in the volume
buffer.

If the document is a text document, the TextEdit structure is disposed of. If it is a picture document,
the Picture structure is disposed of. Finally, the document structure and window are disposed of and the
global variable which keeps track of the number of open windows is decremented.

The last block executes only if gQuittingApplication has been set to true in the function
quitAppEventHandler. If all windows have been closed, QuitApplicationEventLoop is called to terminate the
program; otherwise a kEventWindowClose is created and sent to the front window, causing doCloseCommand to
be called from the window event handler. This repetitive calling of doCloseCommand and doCloseDocWindow
will continue until no windows remain or until gQuittingApplication is set to false by a click in the
Cancel button in a Save Changes or, on Mac OS X only, a Review Unsaved alert.

doOpenFile
doOpenFile opens a new document window and calls the functions which read in the file. It is called by
the event function getFilePutFileEventFunction when an Open button click occurs in an Open dialog. The
event function passes the file system specification structure and document type to doOpenFile.

The call to doNewDocWindow opens a new window and creates an associated document structure. SetWTitle
sets the window's title using information in the file system specification structure. FSpOpenDF opens the
file's data fork. If this call is not successful, the window is disposed of and the function returns.
The next three lines assign the file reference number and file system specification structure to the
relevant fields of the document structure.

The next block calls the appropriate function for reading in the file, depending on whether the file type
is of type 'TEXT' or 'PICT'. If the file is read in successfully, ShowWindow makes the window visible.

Just before the call to ShowWindow, SetWindowProxyFSSpec is called to establish a proxy icon for the
window and associate the file with the window. (The creator code and file type of the file determine the
icon to be displayed.) GetWindowProxyAlias assigns a copy of the alias data for the file to the aliasHdl
field of the window's document structure. (This is used by the file synchronisation function.)
SetWindowModified is called with false passed in the modified parameter. This causes the window proxy
icon to appear in the enabled state, indicating no unsaved changes.

doCreateAskSaveChangesDialog
doCreateAskSaveChangesDialog, which is called from doCloseCommand, uses Navigation Services 3.0 functions
to create and display a window-modal Save Changes alert. The general approach is similar to that used to
create and display the Discard Changes alert, but note that in this case that the isAskSaveChangesDialog
field of the window's document structure is set to true.

Note also that, if the program is running on Mac OS 8/9, and if gCloseDocWindow is true, doCloseDocWindow
is called to close the file, flush the volume, and close down the window. (gCloseDocWindow is set to true

Files and Navigation Services Version 1.0 18-71

in the callback function askSaveDiscardEventFunction if the user clicks the Don't Save push button button
in the Save Changes alert.)

doSaveUsingFSSPec
As will be seen in the event function getFilePutFileEventFunction, when the user clicks on the Save button
in a Save Location dialog, AECoerceDesc is called on the descriptor structure in the selection field of
the NavReplyRecord structure in an attempt to coerce it to type FSRef. If the call is successful (meaning
that the program is running on Mac OS X), doSaveUsingFSRef is called to perform the save using the HFS
Plus API. If the call is not successful (meaning that the program is running on Mac OS 8/9) this function
(doSaveUsingFSSpec) is called.

A descriptor structure is returned in the selection field of the NavReplyRecord structure. AEGetNthPtr
coerces the descriptor structure to typeFSS and stores the result in the local variable fileSpec.

The name field of fileSpec will be empty at this stage. Accordingly, the Navigation Services 3.0 function
NavDialogGetSaveFileName is called to get a CFStringRef to the filename from the dialog object, which is
converted to a Pascal string and assigned to the name field of fileSpec.

If the value in the replacing field of the NavReplyRecord structure indicates that the file is not being
replaced, FSpCreate is called to create a new file of the specified type and with the application's
signature as the specified creator. If this call is not successful, the NavReplyRecord structure is
disposed of and the function returns.

The file system specification structure returned by the FSpCreate call is assigned to the fileFSSpec field
of the window's document structure. If a file currently exists for the document, that file is closed by
the call to FSClose. The data fork of the newly created file is then opened by a call to FSpOpenDF, the
fileRefNum field of the document structure is assigned the file reference number returned by FSpOpenDF,
the window's title is set to the new file's name, and the function doWriteFile is called to write the
document to the new file. NavCompleteSave is called to complete the save operation.

Just before the call to doWriteFile, SetWindowProxyFSSpec is called to establish a proxy icon for the
window and associate the file with the window. (The creator code and file type of the file determine the
icon to be displayed.) GetWindowProxyAlias assigns a copy of the alias data for the file to the aliasHdl
field of the window's document structure. (This is used by the file synchronisation function.)
SetWindowModified is called with false passed in the modified parameter. This causes the window proxy
icon to appear in the enabled state, indicating no unsaved changes.

doSaveUsingFSRef
doSaveUsingFSRef, which is called from the event function getFilePutFileEventFunction, performs the save
using the HFS Plus API. The main if block executes only if the call to AECoerceDesc is successful in
coercing the descriptor structure in the selection field of the NavReplyRecord to type FSRef.

In Carbon, the dataHandle field of descriptor structures is opaque. Thus AEGetDescData is used to extract
the data in this field, which is assigned to the local variable fsRefParent. This is the FSRef for the
parent directory.

At the next block, CFStringGetLength is called to get the number of 16-bit Unicode characters in the
saveFileName field of the NavReplyRecord structure. This facilitates the call to CFStringGetCharacters,
which extracts the contents of the string into a buffer.

If the value in the replacing field of the NavReplyRecord structure indicates that the file is being
replaced, the existing file is first deleted. FSMakeFSRefUnicode, given a parent directory and Unicode
file name, creates an FSRef for the file. This is passed in the call to FSDeleteObject, which deletes the
file.

The call to FSCreateFileUnicode creates a new file with the Unicode name. On return, the last parameter
contains a file system specification structure for the new file. (Although the file is created with a
Unicode name, it can be written using a file system specification structure.)

The call to FSpGetFInfo gets the Finder information from the volume catalog entry for the file. The file
type extracted from the window's document structure is then assigned to the fdType field of the returned
FInfo structure, following which FSpSetFInfo is called to set the new Finder information in the file's
volume catalog entry.

The file system specification structure is assigned to the fileFSSpec field of the window's document
structure.

The data fork of the newly created file is then opened by a call to FSpOpenDF, the fileRefNum field of the
document structure is assigned the file reference number returned by FSpOpenDF, the window's title is set

18-72 Version 1.0 Files and Navigation Services

to the new file's name, and the function doWriteFile is called to write the document to the new file.
NavCompleteSave is called to complete the save operation.

Just before the call to doWriteFile, SetWindowProxyFSSpec is called to establish a proxy icon for the
window and associate the file with the window. (The creator code and file type of the file determine the
icon to be displayed.) GetWindowProxyAlias assigns a copy of the alias data for the file to the aliasHdl
field of the window's document structure. (This is used by the file synchronisation function.)
SetWindowModified is called with false passed in the modified parameter. This causes the window proxy
icon to appear in the enabled state, indicating no unsaved changes.

doWriteFile
doWriteFile is called by doSaveCommand, doSaveUsingFSSPec, and doSaveUsingFSRef. In conjunction with two
supporting functions, it writes the document to disk using the "safe-save" procedure.

The first two lines retrieve a handle to the document structure and the file system specification from the
document structure.

The next two lines create a temporary file name which is bound to be unique. FindFolder finds the
temporary folder on the file's volume, or creates a temporary folder if necessary. FSMakeFSSpec makes a
file system specification structure for the temporary file, using the volume reference number and parent
directory ID returned by the FindFolder call. FSpCreate creates the temporary file in that directory on
that volume, and FSpOpenDF opens the file's data fork.

Within the next if block, the appropriate function is called to write the document's data to the temporary
file.

The two calls to FSClose close both the temporary and existing files prior to the call to
FSpExchangeFiles, which swaps the files' data. The temporary file is then deleted and the data fork of
the existing file is re-opened.

The function doCopyResources is called to copy the missing application name string resource from the
resource fork of the application file to the resource fork of the new document file. If the file type is
'PICT', a 'pnot' resource and associated 'PICT' resource is also copied to the resource fork.

doReadTextFile
doReadTextFile is called by doOpenFile and the event function askSaveDiscardEventFunction to read in data
from an open file of type 'TEXT'.

The first two lines retrieve the file reference number from the document structure.

The next three lines retrieve the handle to the TextEdit structure from the document structure and modify
the text size and line height fields of the TextEdit structure.

SetFPos sets the file mark to the beginning of the file. GetEOF gets the number of bytes in the file. If
the number of bytes exceeds that which can be stored in a TextEdit structure (32,767), the number of bytes
which will be read from the file is restricted to 32,767.

NewHandle allocates a buffer equal to the size of the file (or 32,767 bytes if the preceding if statement
executed). FSRead reads the data from the file into the buffer. MoveHHi and HLockHi move the buffer high
in the heap and lock it preparatory to the call to TESetText. TESetText copies the text in the buffer
into the existing hText handle of the TextEdit edit structure. The buffer is then unlocked and disposed
of.

doReadPictFile
doReadPictFile is called by doOpenFile and the event function askSaveDiscardEventFunction to read in data
from an open file of type 'PICT'.

The first two lines retrieve the file reference number from the document structure. GetEOF gets the
number of bytes in the file. SetFPos sets the file mark 512 bytes (the size of a 'PICT' file's header)
past the beginning of the file, and the next line subtracts the header size from the total size of the
file. NewHandle allocates memory for the Picture structure and FSRead reads in the file's data.

doWriteTextData
doWriteTextData is called by doWriteFile to write text data to the specified file.

The first two lines retrieve the handle to the TextEdit structure from the document structure. The number
of bytes of text is then retrieved from the teLength field of the TextEdit structure.

Files and Navigation Services Version 1.0 18-73

SetFPos sets the file mark to the beginning of the file. FSWrite writes the specified number of bytes to
the file. SetEOF adjusts the file's size. FlushVol stores to disk all unwritten data currently in the
volume buffer.

The penultimate line sets the windowTouched field of the document structure to indicate that the document
data on disk equates to the document data in memory.

doWritePictData
doWritePictData is called by doWriteFile to write picture data to the specified file.

The first two lines retrieve the handle to the relevant Picture structure from the document structure.
SetFPos sets the file mark to the start of the file. FSWrite writes zeros in the first 512 bytes (the
size of a 'PICT' file's header). GetHandleSize gets the size of the Picture structure and FSWrite writes
the bytes in the Picture structure to the file. SetEOF adjusts the file's size and FlushVol stores to
disk all unwritten data currently in the volume buffer.

The penultimate line sets the windowTouched field of the document structure to indicate that the document
data on disk equates to the document data in memory.

getFilePutFileEventFunction
getFilePutFileEventFunction is the event (callback) function pertaining to the Open, Save Location, and
Choose a Folder dialogs. It responds to button clicks in those dialogs.

When the user has clicked one of the dialog's buttons, the kNavCBUserAction message is received in the
callBackSelector formal parameter. When this message is received, the first action is to call
NavDialogGetReply to get a NavReplyRecord structure containing information about the dialog session.
NavDialogGetUserAction is then called to get the user action which dismissed the dialog.

If the user clicked the Open button in an Open dialog, AECountItems is called to count the number of
descriptor structures in the descriptor list returned in the selection field of the NavReplyRecord
structure, and which is created from FSSpec references to items selected in the Open dialog. The for loop
repeats for each of the descriptor structures. AEGetNthPtr gets the file system specification into a
local variable of type FSSpec. This file system specification is then passed in the first parameter of a
call to FSpGetFInfo, allowing the file type to be ascertained. The file system specification and file
type are then passed in a call to the function doOpenFile, which creates a new window and reads in the
file.

If the user clicked the Save button in a Save Location dialog, the window reference received in the
callBackUD formal parameter is assigned to the local variable windowRef. (Recall that the window
reference for the front window was passed in the fifth parameter of the call to NavCreatePutFileDialog.)
The next task is to determine which of the two file saving functions (doSaveUsingFSSpec or
doSaveUsingFSRef) should be called to save the file. Accordingly, AECoerceDesc is called in an attempt to
coerce the descriptor structure in the selection field of the NavReplyRecord structure to type FSRef. If
the call is successful, doSaveUsingFSRef is called; if not, doSaveUsingFSSpec is called.

If the user clicked the Choose button in a Choose a Folder dialog, AEGetNthPtr is called to get the file
system specification into a local variable of type FSSpec. When a file system specification describes a
directory, as it does in this case, the name field is empty and the parID field contains the directory ID
of that directory, not the ID of the parent directory. In this demonstration, the volume reference number
and directory ID are passed in a call to FSMakeFSSpec, which fills in the fields of the FSSpec record
pointed to by the fourth parameter. The contents of the fields of this FSSpec structure (the directory
name, its parent directory ID, and the volume reference number) are then drawn in the bottom of the front
window.

Before exit from the kNavCBUserAction case, NavDisposeReply is called to release the memory allocated for
the NavReplyRecord structure.

When the user has clicked a dialog's Cancel button, the kNavCBTerminate message is received in the
callBackSelector formal parameter. When this message is received, if a dialog reference has been assigned
to the global variable gModalToApplicationNavDialogRef (as it will be in the case of the application-modal
Open and Choose a Folder dialogs), the dialog is disposed of and the global variable is assigned NULL. If
gModalToApplicationNavDialogRef contains NULL, the window reference received in the callBackUD formal
parameter is assigned to the local variable windowRef. (Recall that the window reference for the front
window was passed in the fifth parameter of the call to NavCreatePutFileDialog.) A handle to the window's
document structure is then retrieved, allowing access to the dialog reference stored in that structure.
The dialog is disposed of and the relevant field of the document structure is assigned NULL.

Note that, in Carbon applications, there is no need to respond to the kNavCBEvent message in this event
function or the following event function in order to call the application's window updating function.

18-74 Version 1.0 Files and Navigation Services

This is assuming the standard window event handler is installed on the relevant windows, the application
registers for the kEventWindowDrawContent event type, and calls its window updating function when that
event type is received. The following example is provided for those circumstances in which these
conditions are not met:

 case kNavCBEvent:
 switch(callBackParms->eventData.eventDataParms.event->what)
 {
 case updateEvt:
 windowRef = (WindowRef) callBackParms->eventData.eventDataParms.event->message;
 if(GetWindowKind(windowRef) != kDialogWindowKind)
 doUpdate((EventRecord *) callBackParms->eventData.eventDataParms.event);
 break;
 }
 break;

askSaveDiscardEventFunction
askSaveDiscardEventFunction is the event (callback) function pertaining to the Save Changes and Discard
Changes alerts. It responds to button clicks in those dialogs.

When the user has clicked one of the dialog's buttons, the kNavCBUserAction message is received in the
callBackSelector formal parameter. When this message is received, the first action is to get a handle to
the front window's document structure. (Recall that the reference to the front window was passed in the
third parameter of the NavCreateAskSaveChangesDialog and NavCreateAskDiscardChangesDialog calls.) The
main if block executes only if the modalToWindowNavDialogRef field of the document structure contains a
dialog reference.

If the user clicked the Save button in a Save Changes alert, doSaveCommand is called to save the file and
execution falls through to the kNavUserActionDontSaveChanges case where doCloseDocWindow is called to
close the file, flush the volume, and close down the window.

If the user clicked the Don't Save button in a Save Changes alert, and if the program is running on Mac OS
X, doCloseDocWindow is called to close the file, flush the volume, and close down the window. If the
program is running on Mac OS 9, the global variable gCloseDocWindow is set to true, causing the
doCloseDocWindow call to occur in the function doCreateAskSaveChangesDialog. Before all this occurs,
NavDialogDispose is called to dispose of the alert before the window is closed by the call to
doCloseDocWindow.

If the user clicked the OK button in a Discard Changes alert, the window's content area is erased and the
appropriate function (doReadTextFile or doReadPictFile) is called depending on whether the file type is
'TEXT' or 'PICT'. In addition, the window's "touched" field in the document structure is set to false and
InvalWindowRect is called to force a redraw of the window's content region. Just before the
InvalWindowRect call, SetWindowModified is called with false passed in the modified parameter. This
causes the window proxy icon to appear in the enabled state, indicating no unsaved changes. The Discard
Changes alert is then disposed of.

If the user clicked the Cancel button in a Save Changes or Discard Changes alert, and if it is a Save
Changes alert, the flag gQuittingApplication is set to false. This has the effect of defeating the
execution of the last block of code in the function doCloseDocWindow. (Recall that the
isAskSaveChangesDialog field of the window's document structure is set to true when such alerts are
created.) The alert is then disposed of.

doCopyResources
doCopyResources is called by doWriteFile. It copies the missing application name string resource from the
resource fork of the application file to the resource fork of the new file. If the file type is PICT, a
'pnot' resource and associated 'PICT' resource is also copied. If the program is running on Mac OS 8/9
and the file type is TEXT, a 'pnot' resource, together with a 'TEXT' resource created within the function,
are also copied. (For 'TEXT' files, previews are automatically created on Mac OS X.)

The first line retrieves a handle to the file's document structure. The next four lines establish the
file type involved. FSpCreateResFile creates the resource fork in the new file and FSpOpenResFile opens
the resource fork. The function for copying specified resources between specified files (doCopyAResource)
is then called to copy the missing application name string resource from the resource fork of the
application file to the resource fork of the new file.

If the file type is 'PICT', a 'pnot' resource and associated 'PICT' resource is copied so as to provide a
preview for 'PICT' files in the Open dialog. (Of course, in a real application, the 'pnot' and 'PICT'
resource would be created by the application for each separate 'PICT' file.)

Files and Navigation Services Version 1.0 18-75

If the program is running on Mac OS 8/9 and the file type is 'TEXT', a 'pnot' resource is copied and a
'TEXT' resource is created and copied so as to provide a a preview for 'TEXT' files in the Open dialog.
After the 'pnot' resource is copied, a relocatable block is created and 1024 bytes of the text in the
TextEdit structure is copied to that block. AddResource turns that arbitrary data in memory into a 'TEXT'
resource, assigns a resource type, ID, and name to that resource, and inserts an entry in the resource map
for the current resource file (in this case, the resource fork of the TEXT file). UpdateResFile then
writes the resource map and data to disk.

CloseResFile closes the resource fork of the new file.

doCopyAResource
doCopyAResource copies specified resources between specified files. In this program, it is called only by
doCopyResources.

UseResFile sets the application's resource fork as the current resource file. GetResource reads the
specified resource into memory.

GetResInfo, given a handle, gets the resource type, ID and name. (Note that this line is included only
because of the generic nature of doCopyResource. The calling function has passed doCopyResource the type
and ID in this instance.)

DetachResource removes the resource's handle from the resource map without removing the resource from
memory, and converts the resource handle into a generic handle. UseResFile makes the new file's resource
fork the current resource file. AddResource makes the now arbitrary data in memory into a resource,
assigns a resource ID, type and name to that resource, and inserts an entry in the resource map for the
current resource file. UpdateResFile then writes the resource map and data to disk.

SynchroniseFiles.c

doSynchroniseFiles
doSynchroniseFiles is called from doIdle when the installed timer fires (every 15 ticks when a document
window is the front window).

A reference to the front non-floating window is obtained. The while loop walks the document window
section of the window list (see the call to GetNextWindow at the bottom of the loop) looking for
associated files whose locations have changed. When the last window in the list has been examined, the
loop exits.

Within the while loop, GetWRefCon is called to retrieve the handle to the window's document structure.

If the aliasHdl field of the window's document structure contains NULL, the window does not yet have a
file associated with it, in which case execution falls through to the next iteration of the while loop and
the next window is examined.

If the window has an associated file, the handle to the associated alias structure, which contains the
alias data for the file, is retrieved. ResolveAlias is then called to perform a search for the target of
the alias, returning the file system specification for the target file in the third parameter. After
identifying the target, ResolveAlias compares some key information about the target with the information
in the alias structure. If the information differs, ResolveAlias updates the alias structure to match the
target and sets the aliasChanged parameter to true.

If the aliasChanged parameter is set to true, meaning that the location of the file has changed, the
fileFSSpec field of the window's document structure is assigned the file system specification structure
returned by ResolveAlias. Since it is also possible that the user has renamed the file, SetWTitle is
called to set the window's title to the filename contained in the name field of the file system
specification structure returned by ResolveAlias.

The next task is to determine whether the user has moved the file to the trash or to a folder in the
trash, in which case the document must be closed.

FindFolder is called to get the volume reference number and parent directory ID of the trash folder.
(Note that kUserDomain is passed in the vRefNum parameter. On Mac OS 8/9, this is mapped to
kOnSystemDisk.)

The do/while loop walks up the parent folder hierarchy to the root folder. At the first line in the
do/while loop, if the root folder has been reached (fsRtParID is the parent ID of the root directory), the
file is not in the trash, in which case the loop exits at that point. At the next if statement, the
volume reference number and parent directory ID of the file are compared with the volume reference number

18-76 Version 1.0 Files and Navigation Services

and directory ID of the trash. If they match, the file is closed, its associated memory is disposed of,
and the window is disposed of.

The bottom line of the do/while loop effects the walk up the parent directory hierarchy, FSMakeFSSpec
creates a file system specification structure from the current contents of the vRefNum and parID fields of
newFSSPec. Since newFSSpec is also the target, the parID field is "filled in" again, at every iteration
of the loop, with the parent ID of the directory passed in the second parameter of the FSMakeFSSpec call.

ChooseAFolderDialog.c

doChooseAFolderDialog
doChooseAFolderDialog, which is called when the user chooses the Choose a Folder Dialog item in the
demonstration menu, creates and displays a Choose a Folder dialog.

NavGetDefaultDialogCreationOptions initialises the specified NavDialogCreation Options structure with the
defaults. GetIndString retrieves a Pascal string, which is converted to a CFString and assigned to the
message field of a NavDialogOptions structure. This will appear immediately below the browser list in the
Mac OS 8/9 dialog and above the browser list in the Mac OS X dialog.

The next line ensures that the dialog will be application-modal.

NavCreateChooseFolderDialog creates the dialog and NavDialogRun displays it.

	Introduction
	Files
	Types of Files
	Characteristics of Files
	File Forks
	File Size
	Volumes
	Logical Blocks and Allocation Blocks
	Physical and Logical End-Of-File
	Clumps and Combating File Fragmentation

	File Access
	Access Path and File Reference Number
	File Mark
	Data Buffer
	Disk Cache

	The Hierarchical File System
	Directories and Directory ID
	Root Directory
	Mounted Volumes
	Parent Directory and Parent Directory ID
	Aliases

	Identifying Files and Directories — File System Specification Structure and File System Reference

	Creating, Opening, Reading From, Writing To, and Closing Files
	General File Menu and Required Apple Events Handling Strategy
	Preliminaries - Creating a Document Structure
	Creating a New Document Window
	Opening a File and Reading in Data
	Opening the Navigation Services Open Dialog
	Creating a Window and Opening the File
	Reading File Data

	Saving a File
	Handling the Save Command
	Handling the Save As… Command
	Writing File Data

	Reverting to a Saved File
	Closing a File

	File Synchronisation Functions

	Navigation Services
	Navigation Services Dialogs and Alerts
	Modality
	Standard User Interface Elements in Primary Dialogs
	Preview
	Persistence

	Creating and Displaying an Open Dialog
	The NavDialogCreationOptions Structure
	The Show Pop-up Menu
	Native File Types Section
	The NavTypeList Structure

	Creating and Displaying a Save Location Dialog
	Creating and Displaying a Choose a Folder Dialog
	Creating and Displaying Primary Alerts
	Save Changes Alert
	Discard Changes Alert
	Review Changes Alert — Mac OS X

	Event Handling in the Primary Dialogs
	Event-Handling Function
	kNavCBUserAction Message Received
	The NavReplyRecord Structure
	Responding to User Actions

	kNavCBTerminate Message Received

	Event Handling in Primary Alerts
	Other Application-Defined (Callback) Functions
	Application-Defined Object Filtering
	Application-Defined (Callback) Previews

	Main File Manager Constants, Data Types and Functions
	Relevant Resource Manager Functions
	Relevant Finder Interface Functions
	Main Navigation Services Constants, Data Types, and Functions
	Demonstration Program Files Listing
	Demonstration Program Files Comments

